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'6. ABSTRACT 

~ ~~ 

Thyphenomenon of atmospheric flow over a two-dimensional  surface  obstruction,  such as 
L building  ('modeled as a rectangular  block, a fence or  a  forward-facing step),  is analyzed by 
;hree  methods: ( I) an  inviscid free streamline  approach,  (2) a  turbulent  boundary  layer  approac 
ising  an eddy viscosity  turbulence  model.and  a  horizontal  pressure  gradient  determined by the  in 
riscid  model,  and (3 )  an  approach  using  the  full  Navier-Stokes  equations with three  turbulence 
nodels; i. e. , an eddy  viscosity  model, a turbulence  kinetic-energy  model  and a two-equation 
nodel with an  additional  transport equation for  the  turbulence  length scale. 

. .  
A comparison of the  performance of the  different  turbulence  models is given,  indicating 

hat only the two-equation  model  adequately  accounts for  the  convective  character of turbulence. 
hrbulence flow property  predictions  obtained  from the turbulence  kinetic-energy  model with pre- 
Icribed  length scale are only insignificantly better than  those  obtained  from  the  eddy  viscosity 
nodel. A parametric  study  includes the effects of the  variation of the  characteristic  parameters 
I f  the  assumed  logarithmic  approach  velocity  profile.  For  the  case of the  forward-facing  step, .it 
s shown  that  in  the  downstream flow region  an  increase  of.the  surface  roughness zo gives rise to  
ligher  turbulence  levels  in  the  shear  layer  originating  from  the  step  corner.  This  in  turn  results 
n higher  shear  Stress,  leading  to faster reattachment of the  separated'flow.  The typical eddy 
[ize  in  the  shear  layer  increases with zo  and  causes  rapid  spreading of a region of high stream- 
rrise vorticity  gradients. In the  upstream flow region,  changes in zo have only moderate influencc 
In the flow parameters.  Except  for  very  small  surface  roughnesses,  the  separation bubble in 
Yont of the  step is found to grow  in size. 
- .  
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CHAPTER I 

INTRODUCTION 
9 , .  . . .  , .  . 

Ground  wind  induced  flow  fields  around  surface: i , ,  1 ' : : : 

obstructions  such  as  buil,dings,  br.idges \ .  , a,nd,  .other  man-made :I 

structur,es , have L .  I long . .  I been of, int,erest . .  i.n structqral  design.; i ,  : 

For  many  years  wind . .  .loading  has been,:the  subject  of  studies 

in  various  wind  tunnels. Most of  these  studies,.  however, 

have  been  related to, specific:  problems  rather  than  to  the.. , . 

more  general  and  systematic  flow  field  investigation  which 

%an.,provide  a  code  of  practice  for  the  building  engineer. : h i  

More  recently  such  fundamental  investigations  have 

attained ,new,  importance  through  environmental  considerations:!. 

as  well  as  through  the  many  aerodynamilca.1  prob1,ems  encoun- . . , .  

tered in.the design  of  airports  for V/STOL aircraft or 

helicopter  ports  in  large  metropolitan  areas.  Operating low 
. .  

speed  air:cr,aft . .  betyeen  buqldings  in  .regions  of  .steep  velocity,. 

gradients  or  large  fluctuations  through  vor,tex  fields or 

recirculation  zones is very  hazardous. A clear  under- . .  

standing  and  detailed  knowledge  of  the  flow  field  around 

typical  buildings  is  therefore  a  necessary  source  of 

information  to  minimize  the  dangers  of  these  problems.  The 

need  for  analytical  methods  to  predict  local  atmospheric 

motions  influenced  by  buildings  or  similar  bluff  surface 

obstructions  is  then  obvious. 



In  formulating  an  analytical  model  to  completely 

describe  this  complicated  flow  situation,  the  complete ' 2  

equations  of  motion  must  be  considered.  However,  practical 

methods  for  carrying  out a solution of such  equations  are 

limited  to..numeri.cal  approaches.'which  are  presently  in  the 

development  stage.. : , . .  . , . I  . .  > . .  > .  , . . . . ,  
' A  I . .  . 

Some  of  the  more  recently  developed  methods  which 

were  .quite  successful  shall  be  discussed  here  in  .brief. 

i However,  only  very  -few  methods  incorporate  the  effects  of 

turbulence.  Most of ,them  are  applicable to.laminar time- 

; dependent!:two-' or three-dimensional  incompressible  viscous 

:flow  pr6blems  with:  various  boundary  conditions.  One  of 

these  methods,  which  uses  pressure  and  ve,locities  as  primary 

variables,  and  which  can  be  applied  to  confined:,flows  as 

well: as ,flaws. having  .free.  surfaces  is  the  :"marker-and-cell" 

(MAC,) method  developed  by  Harlow  and  .Welch [l, 21 . at Los 1 

.ALamos. :Certain marker  particles  -are  int.roduced  into  the 

.flow.:calculatian  to  indicate  the  r-espective  fluid  configu- 

t: .ration.  ..'The  flow  equations  :which  are  described  :in  Eulerain .. . 

i space  (full  Navier-Stokes  equations,  incompressible.9:  are 

formulated  in  finite  difference  form,  in  both  space  and  time 

variables.  The  derivation  of  these  finite-difference 

equations  is  based  upon  the  following  sequence  of  events by 

'Numbers  in  brackets refer, to  sLmilarly  numbered,.: 

. .  . .  .' ! I ,;:.,,> ::> 
references  in  the  Bibliography. 

! .  : ,  " .  . i  
. .  I .  
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which  the  whole  configuration  is  advanced  from  one  step  to 

the next. 

1. The velocity  distribution  is  known at the 

beginning of  the cycle either. from an initial 

condition  or  from.  the previous cycle:. . . : r .  ' 

2. The  corresponding  field  of  pressure is!. i 1 I r  ; 1 .I 

calculated. . .  . . .  , .  : 

3. The  components  of acceleration  are  calculated$ 

from these  changes  in  'velocity  are  -computed:..and 

added to  the previous values. : : !  . ~ . . ,., 
I .  . .  

1 ,  I .  4. The  marker  particles  are  moved  to  new posit&ons 

according to  the velocity  determined  for  their 

locations. , . .  . .  , -  . , - ,  . '  

The  method is  capable  of  satisfying a.free-slkp.or 

no-slip condition at a  rigid  wall and a  pressure  boundary, 

condition at a  free surface. Computations  have  indicated 

considerable  numerical  stability and comparisons with, some 

experimental  results  showed  very  close  agreement..!.However, 

finite  difference  approximations htroduce truncation.err,ors 

that  can.  obscure the  effects of real viscosity  ands'infzuence 

the stability of  the solution. If  only the  mean  effects  of 

turbulence  on  a  flow  are of interest,  such  difficulties  can 

usually be avoided,  because the  effective  turbulent vis- 

cosity  is  often  larger than  the molecular  viscosity and 1st 

therefore, not likely to be  obscured by finite  difference 

errors. A method  of  this  type,  proposing .ZIP differencing 

[31 is presented by C. W. Hirt [ 4 ] .  However, ZIP 
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differentiating  cannot  be  readily  incorporated  into  the 

marker-and-cell  technique,  since  its  variables  are  defined 

at different  mesh  points. 

R. S. Hotchkiss [51 quite  successfully  employs  an 

extension.  of  the MAC method  for  his  calculations  of  three- 

dimensional  flows  of  air  and  particles  around  structures. 

The  full  nonlinear  Navier-Stokes  equations  for  incompres- 

sible  flow  with  buoyancy  are  solved.  The  effect of turbu- 

lence  is  resolved  through  a  constant  eddy  viscosity.  The 

method  is  capable  of  satisfying  five  different  kinds of .' 

boundary  conditions,  e.g.,  inflow,  outflow  and  periodic ' f : : : ~  

boundaries,  along  with  rigid  walls  that  have  either  free- : 

slip  or  no-slip  conditions.  In  addition  to  the  Navier- 

Stokes  equations,  the  time  dependent  heat  equation  is  solved 

to  incorporate  features  of  thermal  buoyancy  (Boussinesq 

approximation).  The  computer  program  also  includes  the 

simultaneous  solution  of  a  transport  equation  in  order  to 

determine  distributions  of  particulate  matter.  The  results 

are  displayed  as  three-dimensional  perspective  views  drawn 

by  a  computer.  Similar  equations,  however,  using  a  variable 

eddy  viscosity  have  been  used  by J. W. Deardorff [ 6 1  for  his 

numerical  investigation  of  the  idealized  planetary  boundary 

layer.  The  nonlinear  equations of motion  are  solved  for  the 

ideal  case of neutral  stability,  horizontal  homogeneity of 

. .  

all  dependent  mean  variables  except  the  mean  pressure. No 

buoyancy  effects  are  considered. A discussion  and  details 

of  the  numerical  method  are  given  in [ 7 1 .  . !  
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Although  it  was  possible  in  all  these  examples  to 

study  full  three-dimensional  problems  with  methods  such  as 

the MAC method,  these  calculations  are  still  extremely  time 

consuming  and  require the  largest  computers  now  available. 

A  simplified  marker-and-cell:  ,method. : (SMAC) .has  been  given! by... 

A. A.  Arnsden-  and F,., .H.: Harlow ,[ 81 . Another  exkensian. .of- .the: i 

SMAC method .i-s pToposed by, P. I. Nakayama  .and  N.. C.. !Romero .. 

193 for-the solution  of  incompressible  transient  .flows that' .. 

are  almost,  three-dimensional.  The  equations  of.  motion  are 

two-dimensional  but  .contain  functions  that account.for,  the 

effects  of  a  third  dimension.  The  method  may  also  be  used ' -  

for  the  simple  incorporation  of  internal  obstacles  in  two- , :  

dimensional  flows. , . .  a .  . 

Besides  the MAC method  and  its  numerous  modifi- , .  : .  

cations, some;,other numerical  experiments  with  a  difference 

model  for-  the  time-dependent  Navier-Stokes  equations  have : 

been  repqrted  by  Schoenauer [lo]. He  concludes  that  the. ! 

space  mesh  size  must be inversely  proportional  to  the 

Reynold,s  number. . A coarse  net  produces  a  numerical-"turbu- 

lence" which-tends to  the  physical  turbulence  as  the  mesh . .  

size  goes  to  zero.  However,  the  existing  computers  are  not 

fast  enough  for  fluid  flows  which  have  Reynolds  numbers  in 

the  turbulent  regime. 

Similar.to Hotchkiss [5], D. Djurie  and J. C. Thomas 

1111.. .app,ly  !a.  numerical model. (following  Harlow  and  Welch [ l ' l .  

and  ,.Dearfiorf$ [ 61 .) fo. atmospheric  boundary  layer  calculations, 

especially  to  transport:  -and  diffusion  of  gaseous  air 
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pollutants  in  the  vicinity of tall  buildings.  The  equations 

used  in  this  model  follow  those  derived  by  Ogura  and 

Phillips [12J in  which  the  "anelastic"  approximation  is 

utilized.  In  these  equations  the  basic  density p is 

constant  in  the  horizontal  planes  and  varies  only  in  height. 

The  Coriolis  term  is  not  included  because of the  small  scale 

of  motion  under  consideration.  Periodic  boundary  conditions 

were  used  except  for  pressure,  which  had  a  slight  decrease 

in  wind  direction  to  provide  a  driving  force  which  moves  the 

air. , .  
. ! d l  

R. B. Lantz  and K. H. Coats [13] use  a  quite _ _  . . ? ;  ' 

different  model  for  their  three-dimensional  calculation  of 

spread  and  dilution  of  air  pollutants.  Their  mathematical 

models  are  similar  to  the  "Gaussian  plume"  models [14, 15, 

161 and  their  extensions  which  can  include  topographic 

effects [17, 181. A numerical  solution of the  three- 

dimensional  material  balances  for  pollutant  flow  and f o r  the 

air  stream  is  given.  The  pollutant  material  balance 

requires  the  solution  of  the  three-dimensional  convection- 

diffusion  equation.  Wind  flow  over  uneven  surfaces or 

around  simple  structures  is  calculated  by  numerically 

solving  an  equation  for  the  velocity-potential  which  is 

modified  such  that  it  includes  a  variation  of  the  horizontal 

velocity  with  height  (logarithmic  or  power  law).  The 

numerical  schemes  used  in  the  solution  of  the  two  balance 

equations  are  said  to  be  efficient  ones  requiri+ng  minimal 

computer  time.  The  mathematical  description  of  individual 
- 
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eddies  downstream  from  obstacles  is  felt  not  essential  to 

the  pollutant  dilution  problem.  The  increased  dispersion of 

the  pollutant  due  to  eddy  formation  is  approximated  by 

increasing  the  eddy  diffusity  downstream of the  obstacles. 

There  has  long  been  a  difference of opinion  a's  to 

which  of  the  possible  forms  of  the  equation  of  motion  is  the 

most-  suitable  for  numerical  solutions.  Some  workers,  as for  

example,  Harlow  and  Welch 111, prefer  to  retain  the  veloc- 

ities  and  pressure  as  dependent  variables.  Others,  such  as 

Aziz  and  Hellwns [19] feel  that  it  is  advantageous  to  use 

instead  the  vorticity  and  stream  function  as  dependent 

variables.  Gosman,  et  al. [20], share  the  latter  opinion. 

Their  finite-difference  model  for  steady  two-dimensional 

flows,  as  described  by  elliptical  partial  differential 

equations,  has  proved to be  very  successful  in  a  large 

number  of  problems  to  which  it  was  applied.  The  model  is 

capable  of  handling  turbulent  mean  flows  with  variable  fluid 

transport  properties.  Several  turbulence  models  such  as  the 

Prandtl  mixing  length  concept  or  a  turbulence  kinetic  energy 

model  using  the  Prandtl-Kolmogorov  hypothesis  have  been 

employed.  The  computational  procedure  consists  of  solving 

the  differential  equations  for  the  fundamental  conservation 

laws  of  mass,  momentum  and  energy  which  are  complemented by 

auxiliary  relations  for  the  transport  properties.  Because 

of  the  established  versatility  of  the  model  and  because of 

the generali'ty  of  its  framework,  the  model  shall  be  used  in 

this  investigation  to  study  the  turbulent  flow  with  an 
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atmospheric  velocity  profile  over  a  bluff  surface  obstruc- 

tion. 

' An  alternative  approach,  approximating  atmospheric 

motions  over  surface  obstructions  has  been  carried  out  by 

Frost,  et al. (1973) 1211, in  extending  the  concepts  of 

boundary  layer  theory.  Their  method  was  applied  to  the 

specific  geometry of a  semi-elliptical  cylinder.  The 

characteristics of atmospheric  shear  flow  over  a  rough 

terrain  (disturbed  boundary  layer)  are  coupled  with  the 

turbulent'  boundary  layer  equations  using  Prandtl's  mixing 

length  hypotheses. Two approaches  are  presented  to  incor" 

porate  the  pressure  field  and  boundary  conditions  which 

exist  within  the  large  viscous  region  over  the  obstruction. 

The  first  considers  a  region  in  the  immediate  vicinity  of 

the  body  in  which  the  pressure  distribution  and  outer 

boundary  condition  on  the  velocity  are  computed  from  poten- 

tial'theory  for flow over  the  elliptical  cylinder.  The 

.f .: p '?, L 3 i 

second  approach  considers a much  larger  region of influence, 

extending  from  the  surface  to  the  undisturbed  flow  at  large' 

heights  above  the  dbstruction  and  uses  a  vertical  pressure 

decay  function  to  blend  into  the  undisturbed  flow  region. 

The  main  conclusions  drawn from the  study  were: 

1. Localized  maxima  in  wind  speed  occur  at  the  top 

of  the  semi-elliptical  obstruction. 

2. An  increase  in  the  elliptical  aspect  ratio 
. ..; . . _ .  

. .. . 

decreases  the  wind  speed  within  thk5boundary 

layer  at  the  top  of  the  ellipse  and  ,returns  it 

.. >..;A _. , . 



3 .  

4 .  

To 

9 

to  the  logarithmic  distribution  characteristic 

of the  undisturbed  flow. 

Increase  in  surface  roughness  affect  the  flow  by 

decreasing  the  velocity  in  the  boundary  layer, , 

with  the  most  pronounced  effect  occurring  near ! 

the  surface  of  the  smaller  aspect  ratio  ellipse. 

Reynolds  number  has  a  negligible  effect  on  the, 

overall  flow  for  the  range  of  Reynolds  numbe.rs . , 

considered. 

investigate  the  validity  of  the  Prandtl  mixing 

lenqth  theory  for  atmospheric  flow  in  disturbed  regions 

Frost  and  Harper [22] extended  the  above  approach,  still 

solving  the  boundary  layer  equations  with  equivalent  boundary 

conditions,  but  using  the  conservation  equation  for  turbu- 

lent  kinetic  energy  (TKE)  instead  of  Prandtl's  mixing 

length (PML) to  model  the  effect  of  turbulence.  Comparing 

the  respective  flow  fields  predicted  by  the  two  models of 

PML and  TKE  it  is  found  that  there is only  a  small  differ- 

ence  in  the  predicted  velocity  profiles,  primarily  in  the 

regions  of  strong  pressure  gradients,  caused  through  the 

diffusion  and  the  convection  of  turbulence  kinetic  energy 

not  accounted  for  in  the PML concept.  However,  while  the 

PML model  does  not  provide  any  information  about  the  turbu- 

lence  structure  of  the  flow  field,  the  TKE  model  gives 

physically  quite  meaningful  values of turbulence  intensity 

levels  which  are  presented  and  discussed  in  the  study. :-. 
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Although  the  method  described  has  been  used  in  both 

cases  for  the  flow  over  semi-elliptical  geometries  only,  it 

can  generally  be  applied  to  any  two-dimensional  body  shape. 

In the  course  of  the  following  investigation  it  shall  there- 

fore  be  used for'the calculation  of  the  flow  field  over  a 

bluff  surface  obstruction.  Again  the  Prandtl  mixing  length 

concept  will  be  employed  in  view of its  reasonable  results 

and  its  numerical  efficiency.  The  potential  model,  however, 

used  to  compute  the  pressure  gradient  term  and  outer 

boundary  condition  for  the  flow  over  the  semi-elliptical " z * ! C -  

geometry,  will  be  replaced  by  a  more  sophisticated  model ~ 5 2 ; ' : ~  

inviscid  shear  flow  over  a  bluff  body. 

This  inviscid  model,  which  in  itself  already  repre- 

sents  an  interesting  analytical  solution  to  the  problem,  is 

described  in  Chapter 11. Its  governing  equations  are 

developed  and  the  required  empirical  input  is  discussed. 

The  application  of  this  model  to  atmospheric  flow  conditions 

is  outlined  and  some  typical  results  are  presented. 

Chapter I11 deals  with  the  aforementioned  boundary 

layer  approach  incorporating  the  pressure  field  input  from 

the  inviscid  model of Chapter 11. The  governing  turbulent 

boundary  layer  equations,  their  numerical  solution  procedure 

and  the  initial-and  boundary-conditions  are  briefly'  reviewed. 

Solutions  are  given  for  selected  parameters  characterizing 

the  undisturbed  atmospheric  velocity  profile. 

In  Chapter  IV  the  problem  is  then  approached  by 

solving  the  Navier-Stokes  equations  following  the  method of 
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Gosman,  et  al. [201 .  Three  different  turbulence  models  are 

presented  and  compared--the PML concept,  Prandtl-Kolmogorov's 

TKE model  with  a  given  turbulence  length  scale  distribution 

and  a  TKE  mod.el  w,ith a simultaneous  sol.ution of a  transport I . .  

equation  for  the  turbulence.  length  scale. , In. contrast to , .  ,..I -. . 

the  boundary-layer approach,where the  equations o f  motion : 

are  solved  in  terms of.the primitive  vari.ables u, w and p , .  , . .  I 

the  governing,  equations  are  written  in  terms  of  th,e  vor- - . ,  . 

ticity w and  the  streamfunction $ and  the  other  physical 

properties  involved.  The  equations  are  then  expressed  in  a 

commm> form,  differing  only  by  a  source  term  peculiar  to  the 

property  which  the  equation  represents.  The  transformati,on 

of  the  differential  equations  into  difference  equations 

which  are  solved  by  successive  substitution,  the  incorpo- 

ration of turbulence  into  the  model  as  well  as  the 

respective  boundary  conditions  used  are  explained.  Finally, -,, 

some  results  for  different  parameters  of  the  approaching i 

wind  profile  are.presented  and  discussed  in  the  remainder of 

the  chapter,. 

i 

. . .  . 
. .  ... ' 

. ,  "3& . 1 . .  . .  

\ 



CHAPTER I1 

INVISCID FLOW MODEL 

I. INTRODUCTORY  REMARKS . .  

A.suitable model  for  flow  over  a  bluff  body  should 

at  least  include  the  occurrence  of  flow  separation  and  a 

wake  formation.  For  inviscid  flow  models  this  leads  auto- 

matically  to a free-streamline  approach.  However,  the 

classical  assumption  of  the  free-streamline  analysis [23.] is 

that  of  a  quiescent  fluid  on  the  inner  side  of  the  free...tL.--5u 

streamline  such  that  the  free  streamline  remains  one  of 

constant  pressure  and  velocity.  This  results  in  a  constant 

i _ l .  .- "I ? - 

pressure  wake  of  infinite  extent  which  is  an  inadequate 

representation  of  the  actual  case.  The  model  yields  a  base 

pressure  pb  which  is  equal  to  that  at  infinity,  whereas  it 

should  really  be  pb << p,, thus  leading  to  negative  base 

pressure  coefficients  Cpb.  The  conventional  free-streamline 

theory  therefore  has  to  be  applied  with  moderation. . .  

A somewhat  different  free-streamline  theory for an 

inviscid  shear  flow  over  a  bluff  body,  featuring  an  upstream 

separation  bubble  and  a  closed  downstream  wake  region  with 

variable  pressure,  shall  now  be  described. 

Parkinson  and  Jandali [ 2 4 ]  developed  a  simple  theory 

for  a  two-dimensional  incompressible  uniform  flow  external 

to a bluff  body  and  its  wake.  The  desired  flow  separation r %  
12 
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points are  made  the  critical points of  a  conformal trans- 

formation to a  region in which a  surface  source  creates 

stagnation  conditions at the  critical points. The stagna- 

tion  streamlines  then  transform  to  tangential separation 

streamlines in the physical plane (Figure 2.1). The 

\ 

position and the  strength of the  source  is determined by the 

empirical  requirements  of the  separation position and its 

pressure coefficient. 
. .  

This  model  was  then  used.by Kiya and Arie  [25] and 

extended for  their  calculation  to  a  separate  flow past a 

bluff body attached to a  wall  on which  the approaching 

turbulent boundary layer has been replaced by a hypothetical 

inviscid uniform shear  flow  (Figure 2.2). In  addition, it 

utilizes a solution found by Fraenkel  [26]  to incorporate 

the  formation  of  a  corner eddy in front of  the body, This 

model admits analytical solutions and automatically yields 

closed streamlines in front of the body which are geometri- 

cally very similar to those observed in  practice. Like .the 

Parkinson-Jandali model it includes a  finite  wake  width and 

a  pressure  distribution on  the  separation  streamline  which 

decreases asymptotically towards  the corresponding free 

stream  value at infinity. The theory requires input of four 

empirical  parameters  which depend on  the geometry of the 

body. These  parameters are: 

1. Location of the front face  stagnation point. 
, . ,. . .  
L A .  2. Stagnation point pressure. 

3. Location of the separation point. 



z - plane c - plane 

Physical  Plane Transformation Plane 

Figure 2.1. Physical-  and  basic  transformation-planes with separation  points 
S1 and S2 as critical points [ 2 4 ] .  



z - plane 2 - plane 

Separation  Streamline 

X 

t- plane 

I n  

Source X 

Figure 2.2. Physical-  and  transformation-planes  for  inviscid  parallel  shear 
flow over a bluff  body  attached to a wall [ 2 5 ] .  
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4.  Separation  point  pressure. 

In  the  present  analysis  the  Kiya  and  Arie [ 2 5 ]  model 

has  been  extended  further.  The  original  model  yields  a  wake 

region  which  is  finite  in  width,  however,  infinite  in  length. 

Through  the  addition  of  a  sink  equal  in  strength to the 

existing  source,  at  a  suitable  downstream  distance  in  the 

transformation  plane  it  is  possible  to  close  the  wake  and 

thus  eliminate  the  unrealistic  feature  of  the  original  rear 

model  region.  This  involves  an  additional  empirical 

parameter,  i.e.,  the  location of the rear  reattachment  point. 

11. DEVELOPMENT OF GOVERNING  EQUATIONS  FOR 

I N V I S C I D  FLOW  OVER  A FENCE 

The  details  of  the  inviscid  flow  model  shall  now  be 

developed  for  the  case  of  the  flow  over  a  fence. 

We consider  a  two-dimensional  incompressible, 

inviscid,  steady  uniform  shear  flow  past a-.bluff body  ASB  as 

shown  in  Figure 2.3. The  velocity  profile  at  a  large  dis- 

tance  from  the  body  shall  be 

where U t  is  the  dimensional  velocity  at  the  wall  and k* the 

dimensional  vorticity 

which  is  constant  throughout  the  flow  field,  Introducing a 



z - plane 
3 
Y 

!.. 

A 
a X 

5 - plane 2 - plane 
Y n 

I1 

A 
Source Sink 

S B 

-2FA *[€I 5 X 

L; 

Figure 2.3. Physical-  and  transformation-planes  for  inviscid  parallel  shear 
flow over a fence. 
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stream  function $* by 

v* - - -w ax* 

where  u*  and  v*  are  the  velocity  components of the  velocity 

vector  q*  in  the x* and y* direction  respectively, i.e.., -f 

The  continuity  equation 

is  then  automatically  satisfied.  The  vorticity  vector a* is 
-f 

given by 

and  from  Equation 2.2 

We  can  nondimensionalize  the  coordinates by a  reference 

length  h* 

x = -. X* 
h* ' 

and  the  velocities by a  reference  value  UEef 



I '  

and  thus  rewrite'  Equations 2.1 and 2.2 as 

and 

k = a y - a x  
au av (2.10) 

Furthermore,  Equation 2.6 becomes 

V2$ = k (2.11) 

where 

(2.12) 

is the  dimensionless  stream  function. It can  easily  be 

shown  that Euler's equation of  motion  for  steady  flow 

V - qx curl q = -grad p -+ 3 (2.13) 

or 

(2.14) 

simply  reduces  to  Equation 2.11 which  is  therefore  the 

governing  equation of  our flow problem. 

On  the boundaries, we  require  the following  condi- 

tions to be satisfied: 



.. I 

'20 ' 

. .  . .  . .  . . .  

JI = const. 

on the  wall and solid  surface and 
3 . . . 

x + U O  + ky; a Y. 

at large  distances  away from the body, 

stream  function  into  two parts, i.e., 

JI = z k y 2  1 + Y 

then 

V2$ = k + V2Y 

(2.15) 

(2.16) 

If we  subdivide  the 

and  .from comparison  with  Equation 2.11 we get 

V 2 Y  = 0 (2.19) 

as.the new  governing  equation  with  the  transformed  boundary 

conditions 

Y + z ky2 = const. 1 

on the  wall- and solid surface and 

ay 
ax - +  0 

(2.20) 

(2.21) 

at  large  distances  away  from  the body. 

Through  the  introduction  of  a  function @ which is 

related  to Y by the  Cauchy-Riemann  relations 
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a4 alu 
a y = - -  X 

. .  
(2.22) 

3 .  . . " ... . .  , . .  . .  , . _  I >  . 
. .  . .  .. . 

we  can  define  a  complex  potential 

. ' I  , . . .  
describes  our  physical z-plane. We can  now transform'bhe ' 

wall  boundary AwA and BBw toge-ther with  the  fence  contour 

ASB into  the  upper  half of a  new  plane  called  the r;-plane 

(see.  Figure 2.3, page  17)  where 

, .  j .  . -  

I .. .. .j ' ' . ... -, * 

. .  

Under  the  assumption  that  this  transformation.  behaves  as 

(2.28) 

. .  , .  . .. . . .  

Fraenkel  [26]  has found'a solution  to  Equation 2.19 which 
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satisfies  the boundary conditions  for Equations 2.20 and 

2.21,  i.e., 

Y = Im(WI + WII) 

where 

and 

(2.29) 

(2.30) 

(2.31) 
I& c , 

In  order  to  have a free  streamline  which  originates from the 

separation point S, extends in the  downstream  direction and 

reattaches at R, we have to add to our  stream  function Y a 

combination  of  sinks and sources  which  are  appropriately 

located. For  this purpose  a third complex plane, the Z- 

plane is introduced by the transformation 

< = z + -  a2 
Z (2.32) 

Figure 2.3, page 17, shows  this  plane with its 

source-sink arrangement. In  addition to  the  source at 

X = .eB employed in Reference  [25] a sink is placed down- 

stream at the  location X = ae . 6 

The  complex potential  of  the source-sipk system in 

this  plane  is  given by 



- Rn(Z - ae + CI (2.33) 

If we add this  to Equation 2.29 we get  the stream function $ 

of the resulting flow  as 

$ = 1 ky2 + Im(WI + WII + WrII) 

The  complex velocity 

w = u - i v  
.. ,. :: i 

can  then be determined as 

a\y 3Y 
aY ax 

u - i v = k y + - + i -  

or with the Cauchy-Riemann relations 

u - i v = k y + -  dW dz 

which is 

u - i v = k y +  dWIII dZ]/dz 
dZ * x  ar 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

Since  the  angle  of  intersection  of  the  curve at S is not 

preserved in the z-plane the point S is the  critical point 

of the transformation, i.e., 
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In order  that  the  velocity at this  .point  remains  finite,  we 

require from Equation 2.38 that 

f . ,  . .  ) , .  . .  
. I  

dWII - + - +  
d6 dZ = 0  (2.40) 

. I .  . .  

The  three  complex  planes  are re1ate.d  by 
5,' ') .- i 

* >  f. ,?, , , >-. i .  :>t - . . ( ' . .  . .- . . .' 
. .,, 

. . .  . .. 

z = Z - -  a2 
n 

To use Fraenkel's solution  (Equation 2.19) one  has to 

es'tab'iish a  relation  between  the z- and 6-plane from 
;> E ,  ' : 1  

j t, . - 

Equations 2.41 and 2.42 and  find  the  constants kl and kp in 

Equation 2.28. Kiya and Arie 1251 have  found WI and WII to 

(2.44) 
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wIII - wIIIB + wII16 + c  (2 .45)  
- 

. .  

wIII = g[FB(2) 7T - F g ( 2 ) ]  + C ( 2 . 4 6 )  

where 

dZ Z2 
d6 22 - a2 "- 

and 

(2 .491 

( 2 . 5 0 )  

Note, the latter  expression  has  a  simple,zero at' the sepa- 

ration  point 2 = ia. Q is  now  determined  from  Equation 2.40 

as 

( 2 . 5'1 1 

I 

Substituting  the  foregoing  results  into  Equation 
. . , . .  . .  

, , .  I .  . I 

2.34 and rearranging  source  terms  gives  the  following 

expression  for  the  stream  function $: 

. .  

, .  . ; .  . .  
' S  

- .  . .  
. ,  
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JI 

The 

u -  

ky2 + 2 Im[ [uo + e] IT a 5 +  

complex  velocity  from  Equation 2.38 
I i 

. . .  

becomes 

+ 8  Z2 [ 2(Z - a cosh 8 )  
IT 22 - a2 22 - 2aZ cosh B + a2 

- 2(Z - a cosh 6) 
2 2  - 2aZ cosh f3 + a2 

(2.52) 

(2.53) 

(2.54) 

Since the nondimensional  vorticity k is'constant throughout 

the flow  field,  Euler  Equation 2.13 can be  integrated to 

give  Bernoullis  equation 

$- + p - kJI = const. 

or 

2 

u2 + v2 
2 ;  + P - kJI = 2 +  Pm - kJIa 

(2.55) 

(2.56) 
. I  

. .  . _  . . 

allowing the determination of the pressure  &efficient .' 

'4 ; . 



c = u t -  P 
(U* + v2) 

which  reduces on  the body surface to 

I 

I 
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(2.57) 

(2.58) 

Assuming that separation occurs  at  a  given  base pressure 

Cpb, assumed constant  over  the  whole  rear  side of the  fence, 

we  can  write , 

, b  '<,:  .. . ' ':<.\';;,; .. ; < ; I ;  t ; j ,  . ) ( . .  . .  :.:' ; ; i < ; ! , . .  ! ; I '  

. ,. . 
>! . . .  .. 5 

. r  ;;- 

. . &  
- 't ! 

. ... 
. ,  

. . 1 .  " ,. . I  , . . . , _ ,  . . . i _  . , 
. .  

. .  . .  . 
* x  . .. . 

' :  , .  , :  
i . . C "  I .  , .  

cpb = u; - v; (2.59) 
. 1 .  : ,  

As is required through Equation 2.40, that the  separation 

velocity be  finite., vs is detWqnnin'eh! from Equat$,on, 2.54 by 
' I  

(2 60) 

111. REQUIRED EMPIRICAL INPUT 

An inviscid shear  flow  model for  the  flow  over a 

fence, yielding  a realistic upstream separation bubble and a 

finite  wake  region  has  been formulated in the preceding 

seztion. The input of five empirkieal :parameters is required 
[ (  ' ' .  , - <  a # . - .  . . . .  

I 

to .complete the model. These are: 
. ,. . . . -_." . . .  . .  
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1. 

2. 

3 .  

4. 

5. 

The  front face 

z max - 'Ymax - 

The front face 

'Pmax 
The  separation 

z s  = iys 

The  separation 

'PS = 'Pb 
The downstream 

ZR = x R 

stagnation point location 

stagnation point pressure 

point location 

point pressure 

reattachment point location 

Using Equation 2.54 relationships  between  parameters 1, 3 

and 5 respectively and Equation 2.58 for the remaining two 

parameters, one  obtains  five equations to solve for the  five 

IV. DISCUSSION OF APPLICABILITY OF FENCE 

MODEL TO RECTANGLJLAR BODIES 

The  flow over a rectangular block  (see Figure 2.4) 

can  be treated similarly to the  one  over a fence, since  the 

external  flow field is qualitatively the  same  as  that for a 

fence provided reattachment does not occur  on  the roof. The 

upstream separation bubble  is only insignificantly different 

and the downstream separation must occur at the  sharp 

leading edge and thus at the  same  location  as  in  the  case of 

the fence. A different empirical  input  for  the separation 



.. c 

, :  

X 

' Y  Rectangular Block 

Figure 2.4. Implementation  of  different  body  geometries  by  using  different 
empirical  values C and xR. Pb 

- 
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base  pressure  and  the  downstream  reattachment  point  would 

therefore  account  sufficiently for the  new  flow  situation. 

Some  typical  base  pressure  coefficients  for  different 

building  geometries  are  shown  in  Table 2.1. It  is  pointed 

out  that  the  rectangular  block  buildings  generally  have 

higher  Cpb  values  than  that  currently  used  for  the  case  of 

the  fence . 
V. RELATION  TO  ATMOSPHERIC FLOWS 

Since  the  inviscid  flow  model  is  dependent on ._ 

empirical  inputs,  it  is  reasonable to postulate  that  if ; .  

these  inputs  are  characteristic of bluff  geometries  in  the 

atmospheric  boundary  layer,  then  the  resulting  solutions 

should  reflect  flow  characteristics  of  the  atmosphere. 

One  of  the  empirical  input  parameters  discussed 

previously,  which  seems  amenable to this  approach,  is  the 

base  pressure  coefficient  Cpb.  According  to  experiments  by 

Good  and  Joubert [27], pressures  on  the  upstream  face of a 

normal  plate  located  in a smooth-wall-boundary  layer  are 

determined  by a wall  similarity  law  of  the  form: 

h*u: 
CPb = -[&]2[152 log - V *  - 147 + P@[g]] (2.62) 

Here P is constant  for  turbulent  boundary  layers  with  zero 

pressure  gradient  and @ is a universal  function  of  h*/6* 

which  is  tabulated  in  their  paper.  When h*/6* is less  than 
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TABLE 2.1 

TYPICAL BASE PRESSURE  COEFFICIENTS FOR 
DIFFERENT  BUILDING  GEOMETRIES 

h .L B 'Pb 

1.0 

1.0 

1.0 

1.0 

0 

0 . 4  

l e 0  

4.0  

W 

0 . 4  

1.0 

4 . 0  

- 0 . 8 5  

-0.6*  

-0 .  s* 
-0 .3* 

*Source: Peter Sachs, Wind Forces in Enqineering 
(New York: Pergamon Press, 197a. 
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0.5, as  is  the  case  for  most  atmospheric  boundary layers, 

4 (h*/S*) is  negligibly small. Thus, 

= -[ u3: I 2 [ m  log - - h*u$ 
'Pb Tz V *  (2.63) 

Now  Cpb  obeys a wall  similarity  law  in  the  sense 

that cpb(U:&u$) can be described  as  a  function  of h*u$/v* 

only,  for  the  case of the  smooth wall. 

Applying  this  to  the  case of the  rough  wall,  where 

the  similarity  law becomes: 

(2.64) 

(2.65) 

Figure 2.5 shows a graphical  representation of this  equation 

for  several  dimensionless  surface  roughnesses.  Extending 

the  equation  still  further in order  to  relate  to  atmospheric 

flows and introducing  a  geostrophic  drag  coefficient 

(2.66) 

with G* being the  geostropic  wind,  Equation 2.65 can  be 

written as: 



-1.2 

-1.0 

-0.8 

-0.6 

-0.4 

-0.2 

0.0 
0.0 0.02 0 . 0 4  0.06 0.08 0.1 

Friction Velocity u* 

Figure 2.5. Graphical  representation of Equation 2.65. 
w 
w 
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(2.67) 

From Csanady [28], the  geostrophic  drag  coefficient C is a 

function  of  the Rossby number Ro- f* ** ' 0 ,  i.e;, 
* g 

c2 = f(Ro) 
g 

(2.69) 

and hence  one  can  rewrite Equation 2.65 as 

(2.69) 

It is proposed that  the inviscid solution  can  thus 

be related to  the prevailing  atmospheric  condition by using 

a Cpb value as an input, which is predicted from Equation 

2.65 with known-  values of ug and 2: or from Equation 2.69 

with  known  values  of G, Ro and 2:. 

VI. RESULTS OF INVISCID MODEL 

The aforementioned model  was applied to  the  fence 

problem using the  following  empirical input-parameters 

1. Front  face  stagnation  point  location 

Ymax = 0.6 (2.70a) 

2. Front  face  stagnation point pressure 

%ax = 0.5 

3. Separation  point  pressure 

Cps = Cpb = ~ 0 ~ 8 5  

(2.70b) 

(2.70~) 
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4. Downstream  reattachment  point location 

x = 13.0 R (2.70d) 

Conditions  1  and 4 were  taken from Good and Joubert [27]. 

Condition 3 was determined 

page 33, for the values 

* 
z o  = 3 = 0.005 

These  four  empirical input 

from Equation 2.65 or  Figure 2.5, 

(2.70e) 

parameters y max ‘Pmax‘  ‘Pb and 
x lead to  the  following  four calculated parameters: R 

Uo = 0.7071 

k = 1.0245 

cosh B = 1.3132 

cosh 6 = 10.725 (2.71) 

The  streamline  pattern computed on  the  basis of these  values 

is shown in Figure 2.6 and an enlargement of the upstream 

separation  region in Figure 2.7. As there  are only limited 

experimental  results available, especially from full  scale 

studies, the quality  of this  flow  field description  cannot 

readily  be  determined, However, when compared with the small 

scale  experimental  results of [27] very good agreement is 

found, as  can  be  seen  in  Figure 2.8, 

Velocity  profiles of the u-component for various x- 

stations are shown in Figure 2.9. Here  the simplification 
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Figure 2.6. Streamlines for inviscid model. 
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Figure 2.9. Velocity  profiles for various x-station8. 
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of the  model to a  constant  vorticity  flow  field  becomes . 

apparent in the  almost  linear velocity profiles. Neverthe- 

less, the  region of retarded flow 'upstream, the recircu- 

lating separation  bubble in front  of  the  fence and' the 

accelerated flow  region in the vicinity of the  fence  are 

qual'itativeiy  correct. This  is  also  the  case for the plot 

of the velocity gradient along various  streamlines in 

Figure 2.10. 

In turn, the computed pressure  distribution  is 

reasonable. The almost exact agreement of the pressure 

variation along the  front  face of the  fence  with experiments, 

which  was already  found for the  infinite  wake  model 1251, is 

maintained for  the modified closed wake  flow model. The 

pressure variation  along  given  streamlines  near the ground 

and along 'the separation  streamline is  shown in Figure 2.11. 

This pressure distribution  will  be used as  the imposed 

pressure field in the viscous turbulent boundary layer 

approach to be  described subsequently. 

B 

Relating the  model to atmospheric flow  conditions by 

varying the base pressure  coefficient Cpb according to 

relation 2,65 but holding the remaining empirical input 

parameters constant', the  results  displayed in Figure 2.12 

are achieved, It is  found  that  the  maximum height hmax of 

the recirculation  region behind the obstacle  decreases  with 

growing friction velocity u, but increases,  for larger sur- 

face  roughness z o .  
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Figure 2.10 . Velocity  gradient  along  different  streamlines. 
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Figure 2.13 shows  the predicted velocity  increaee 

due  to  the presence of the obstruction  calculated at an x- 

station  of six obstacle he.ights downstream. UEJF represents 

the velocity profile  which  would  exist at this  particular 

location in the  absence of the  obstruction, i.e., the 

approach velocity profile as defined by Equation 2.1. The 

profiles for the velocity increase are  given  for  various 

base pressure  coefficients,  which  can be related to  the 

atmospheric  conditions  with  Equations 2.65 through 2.69. 

In conclusion it can  be said that  this  rotational 

inviscid model f o r  the  flow  over  a  fencep featuring an up- 

stream corner eddy and a  finite  wake  region  is in good 

agreement with experimental results in the vicinity of the 

obstruction. It describes  quite  realistically  the  size  of 

the  front separation bubble, predicts  the  pressure distri- 

bution along the front side of the  fence and determines  the 

downstream separation streamline enclosing the recirculating 

wake region. Through  the  simplification to a constant 

vorticlty flow field, however,  the  far field representation 

which  returns to the assumed linear velocity as y -+ Q) is, 

with  the exception of  the  streamline pattern, not realistic. 

One  expects a logarithmic velocity profile in the  atmosphere 

and hence  both the upstream velocity profile and the veiocity 

profile at y -+ Q) should have  this  logarithmic form. To 

achieve  more realistic far field velocity profiles  a 

boundary layer approach  which  will  give  a  better approxi- 

mation to  the  flow in a  turbulent  natural  atmosphere is 
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developed  in the  following chapter. The  results  of  the 

preceding analysis, however, become  extremely  useful in 

defining the imposed  pressure distribution required  in 

boundary  layer analysis. 



CHAPTER  I11 

ANALYSIS OF ATMOSPHERIC FLOW OVER A BLUFF 

SURFACE OBSTRUCTION BY THE TURBULENT 

BOUNDARY LAYER  APPROACH 

To apply the  concepts  of boundary layer theory  to 

two-dimensional atmospheric flow, consideration  is given  to 

a homogeneous  terrain of infinite extent on  which a bluff 

surface  obstruction or  fence  of height h* is located. The 

inviscid flow field around such  a fence was established in 

the  previous chapter. Far upstream  of  the  obstruction the 

viscous  turbulent  atmospheric  motion is described by the 

logarithmic velocity distribution 

where u$ is the  friction velocity defined in terms of t h e  

surface  shear  stress T; 

and K the  von Karman constant of value 0,35 to 0.4 

I. GOVERNING EQUATIONS 

The governing  turbulent mean-flow boundary layer 

equations for steady flow  within  the atmospheric boundary 

47 
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lqyer as derived in [211  are: 

where  overbar  denotes  an  ensemble  average and p 8  is a 

constant  density  consistent with  an  adiabatic  reference 

8tate. The pressure F* represents the difference  between 
the  total pressure and the hydrostatic pressure.  It should 

be recalled that, in  addition  to  the  conventional boundary 

layer approximations, two  other  assumptions  underlie  the 

above equations: 

1. The atmosphere is neutrally stable. 

2. Coriolis  effects  are negligible, which is  a 

reasonable  assumption for the atmospheric 

boundary layer  below 30 to 50 m, see for example 

Tverskoi [291. 

The  eddy  viscosity, E*, may  be  related to  the mean 

flow  through  the  Prandtl  mixing  length  hypothesis in the 

following way: 

with  the mixing  length R* as 
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(3’. 7 )  !, 

It was already pointed out in  Reference [21] that  this 

assumption  is  not strictly correct in regions of large flow 

curvature, but it  should  suffice in view  of  further assump- ,: 

tions imposed later in this report on  the  curvature of the 

flow and the  coordinate system used  in the investigation. . ;  . 
, .  

11. INCORPORATION OF THE INVISCID SOLUTION 
. .  

When  analyzing  conventional boundary layer flow, the,:’. 

pressure gradient in Equation 3.4 is approximated by the 

pressure  variation along the zero streamline determined from 

the inviscid flow  solution for the respective body. This 

approximation is justified through  Equation 3.5. Typical 

pressure  changes for  the inviscid flow  over a fence  are 

shown in Figure 2.11, page 42. When the pressure gradient 

along the  zero  streamline  is introduced into  the boundary 

layer equation  for  the bluff body,  howe.ver, it may cause 

flow  separation  which  cannot  be handled with  the boundary 

layer approximation. By successively introducing the pres- 

sure  gradients  of  streamlines  further away from the body, 

one  can find the first streamline for which  the corresponding 

pressure  gradient  does not yield an  upstream separation. 

This  streamline  will be called the nonseparating streamline 

+,El . The pressure  gradient along this  streamline is assumed 

to drive  the  flow in the present problem. This is believed 

to  be a  reasonable  assumption in view  of  the fact  that the 

I 
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primary  interest of this  investigation  is  .directed.  toward 

the  solution  farther away  from the obstruction. 

. .  

Another  input  from  the  inviscid  solution  into  con- 

ventional  boundary  layer  analysis is that  a  free-stream 

velocity.at  the  outer  edge  of  the boundary  layer  is pre- 

scribed. In the present  approach  however, the internal 

boundary  layer  produced by the  surface  obstruction  has  to 

merge  with  the  undisturbed  atmospheric  boundary  layer and 

i t s  logarithmic  velocity  profile at a sufficiently  high 

altitude.  Letting the pressure  gradient  decay to  zero in 

the vertical  direction  merges  the  velocity  profile  smoothly 

with  the  logarithmic one. Therefore, the form of the pres- 

sure  distribution  introduced  into the boundary  layer 

equations in previous  approaches 121, 221 was  given by 

( 3 . 8 )  

where  q(z*) is the  vertical decay  function. An initial 

approximation of this  function  was  given by the following 

second  order  quadratic  decay function: 

for - 0.5 z* 
h* 

In  the  current investigation  this  somewhat  arbitrary 

approximation  has  been  replaced by a pressure  decay  derived 
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from the inviscid model described in  Chapter 11.  It must be 

noted, however, that  the  vertical pressure distribution 

based on  a linear velocity profile will not behave the same 

in the  far  field  as  a logarithmic profile. Therefore, it Is 

a88Wed that  the  respective  vertical  decay functions are 

proportional to  their momentum flux, i.eo, 

With  the decay  of the linear solution  given as 

(3.109 

(3.11) 

the  resulting pressure distribution finally  becomes: 

111. COORDINATE SYSTEM 
. , ., 

Since  the pressure force  driving the boundary layer 

flow  is determined along the inviscid streamlines  over  the 

fence, the coordinate system must  also be oriented along 

these streamlines, resulting in the  orthogonal system shown 

in  Figure 3.la. The  curvature of this  coordinate system is 

small  throughout the  flow  regimel except in the vicinity of 

the upstream  stagnation point  and the  downstream reattachment 
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X 

(a) Physical Coordinates 

X 

(b) Assumed Numerical Coordinates 

Figure  3 . 1 .  Coordinate  system used i n  boundary layer 
approach for f l o w  over a fence.  
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zone, where  the  slope of the  zero  streamline  is dis- 

continuous.  It :is argued, however, that at a  location 

somewhat removed from the  region of large  curvature  the  flow 

wili  be  driven by the pressure distribution along the nOn- 

separating streamline. This  is in agreement  with  Hunt  [30] 

as described later. Alternately one may look at the 

approximation as being an  analysis  of  flow  over a solid body 

defined by the nonseparating  streamline which  envelops  the 

upstream and downstream  separation regions. Since  the 

primary interest in the present report is the  flow field 

above  the  obstruction where aircraft operations  occur,  the 

boundary layer approximation as posed here  is expected to 

provide  meaningful results. Since  the boundary layer con- 

cept is generally a first order  approximation to viscous 

flow, neglecting the higher order effects produced  by 

curvature, it is not expected that the present boundary 

layer analysis  will provide accurate results in regions of 

strong curvature,  as for example, in the upstream vicinity 

of the obstacle. On  the other  hand, there is little gain in 

transforming the boundary layer equations  into curvi-linear 

coordinates thereby introducing  addltional complications. 

As a  consequence the calculations  have  been carried out in 

the Cartesian  coordinate  system (x*,z*) shown in Figure 3.lb. 

The x*-direction is measured along the inviscid streamline 

with  the z*-axis extending perpendicular to it  at each x*- 

station. The resulting velocity profiles calculated in this 

coordinate  system are  then assumed to exist perpendicular to 

I 
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the  zero  streamline  in  the  physical plane. This  is believed 

to be a  reasonable  assumption for the  following  two reasons: 

first, the  good  geometrical  agreement of the separation 

streamline of the inviscid solution  with  experimental 

results, as  can be seen from Figure 2 . 8 ,  page 38,  and, 

second, that these  geometrical  effects  of  the  recirculation 

region  on  the  flow  now enter the  equations  through  the 

imposed pressure gradient, 

Hunt [30] has  shown  that  a  first  order  analysis  can 

be j u s t i f i e d .  if 

(3.13) 

where H* and L* are  the  characteristic  height and length of 

the  disturbance and 6; the  thickness  of  an  internal boundary 

layer calculated from 

(3.14) 

In the present approach H* and L* would be  chosen  as  shown 

in Figure 3 0 2 ,  with H* being the  maximum height of the 

separation region  hAax  as  given in Figure 2 0 1 2 ,  page 43, and 

L* being the horizontal length of the combined upstream and 

downstream separation region, also specified by the inviscid 

solution. For a  typical  surface  roughness of zt = 0.005 h* 

one would then get from the  above  condition  Equation 3.13 

with 3.14:  



B Outer Layer 

Figure 3.2, Justification  of  first  order  analysis  after  Hunt [301. 
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0.1693 << 0.6497 

or for zt = Oo05 h* 

0.1693 << 0,5858 

which  are.reasonably  satisfied, 

The  no-slip  condition  implied  in  the  boundary  layer 

solution at the  lower  boundary  causes  the  calculated 

velocities  to  vanlsh  along  the  zero  streamline.  This 

becomes  physically  unrealistic  where  the  zero-streamline 

separates from the surface to become a  free or dividing 

streamlineo  Therefore,  the  following  model for calculating 

velocity  profiles  through  the recirculatmg wake  region 

behind  the  fence is proposed  in  form of an  approximate 

solution  using  an  integral  technique  under  investigation  by 

Kaul  and  Frost [31], Figure 3 . 3  illustrates  the  flow 

regions  considered  and  how  they  are  matched  with  the  present 

boundary  layer  profile. 

A polynomial  expression 

- u*(x*,z*) = A(x* )  '+ B(x*)z* + C ( X * ) Z * ~  + D ( x * ) ~ * ~  (3.15a) 

is assumed with  the  following  governing  boundary  conditions: 

1. u*(x*,O) = 0 
- 

at z* = z t  (3.15b) 

(3.15c) 



Numerical  Boundary  Layer Solution 

"-. . .  / .- 

Error Function Profile 
11 

I 
FLOW 

Wake 

Profile by Integral 

Technique 

Figure 3.3. Matching of boundary-layer-velocity  profile  with  shear  layer-  and 
wake-velocity  profile [31]. 
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Z* 

5. / u*(z*)dz* = 0 
- 

at z* = zp 

at z* = 2.7 

(3.15d) 

(3.15e) 

(3.15f) 

Thus  there  are  five  equations for the  five  unknowns zl, A, 

B, C and D. Condition 1 implies  the  no-slip  condition  at 

the  wall.  Condition 2 assumes  that  the  pressure  distri- 

bution  along  the  surface  is  sufficiently  well  known  that  an 

empirical  correlation  can  be  found to obtain ap*/a~*1~*=~. 

Conditions 3 and 4 state  matching  of  the  shear  layer  flow, 

expressed  as  an  error  function  velocity  profile 

(3.16) 

with  the  wake  flow  at  the  edge of the  separated  flow. 

Condition 5 states  conservation of mass in  the  recirculation 

region, if  the  zero  streamline is assumed to encompass  the 

rear  separation  bubble. 

Further  details  and  results of the  incorporation  of 

this  wake  flow  model  into  the  boundary  layer  approach  can  be 

found  in  Reference E311 and  shall  therefore  not  be  reported 

here.  The  primary  interest of this investigation is to 

study  the  flow  through  which  landing  and  ascending  aircraft 

would pass, ioe., the  region  somewhat  above TnS .where  the 
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eding is 

expected to provide  meaningful results. 

IV. NUMERICAL SOLUTION 

The  governing  equations (3.3 through 3.5) were non- 

dimensionalized by adopting  some  characteristic  length L* 

and  velocity Uz from  the  flow  field  over  the fence. The 

height, h*, of the  obstruction  was  chosen to be  the 

characteristic  length  for  this case. The characteristic 

velocity  is  somewhat  arbitrary and is assigned  a  value  equal 

to that of the undisturbed  logarithmic  velocity  profile 

evaluated at three  obstacle  heights  above  the ground. The 

resulting  equations  in  nondimensionalized  form  are then 

given by: 

where 

X* x = 

- ii* 
w ,= - U* 

m 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

and  Re  denotes the  Reynolds number 

I 
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Uzh* 

Re = - 
V *  (3.22) 

Expanding  Equation 3.18, the  equations  to  be  solved  are 

given by: 

(3.24) 

with  the  eddy  viscosity  model  relating  the  turbulent  motion 

to  the  mean  flow  variables: 

(3.25) 

These  three  equations  together  with  the  boundary  and  initial 

conditions  form a closed  set  of  nonlinear,  parabolic, 

partial  differential  equations.  They  were  approximated  by 

an  implicit  finite  difference  scheme.  After  linearization 

of the  inertia  terms,  the  resulting  tridiagonal  matrix  was 

solved  by  an  elimination  routine. A detailed  description  is 

given  in  Frost,  et  al.  [21] 

The  lower  boundary  condition  imposed a no-slip  mean 

velocity  at  the  wall.  In  addition  surface  roughness  effects 

were  incorporated  into  the  numerical  procedure by applying 

the  logarithmic  velocity  distribution  to  the  two  points 

closest  to  the  lower  boundary,  thereby  implying a wall  layer 

of height-in-variant  shear  stress  and  friction  velocity u*. 



I 

61 

It  was assumed that  the  value of u* is  given by: 
' '. 

. .  

where  (3)  is  the velocity at the  grid point z = 3AZ. The --*: 

veloc'ity a,t grid point 2 can  be calculated by the  logarithmic 

law as: . .  . .  
.I . 

(3.27)-  

and (1) will  remain zero. . I  

The  upper boundary condition  speclfies.the velocity 

to be equal to  the  initial  logarithmic profile at 10  fence 

heights  above  the obstruction. Thus  the velocity profile, 

which  merges  with  that of the logarithmic profile  due to  the: 

decaying pressure gradient,  is matched with the undisturbed 

flow at the  outer boundary. 

The velocity w in the vertical  direction was obtained 
by integrating the continuity  equation (3.23) using the 

above calculated velbcity profile of c. 
. .  

The  choice of mesh  size for  the problem considered 

was dictated primarily by the truncation errox of the 

difference  equations and,  in some  cases, by the stability 

criteria. A balance  between the accuracy required in the' 

solution and the  computing  time  necessary to meet  these con- 

ditions hadl?to be achieved. For  these  reasons plus some 

numerical  experimentatjon the  following  mesh  sizes  were 
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chosen. A constant  grid  size  in  the  marching (x) direction 

of 0.1 the  fence  height  h  and  a  variable  mesh  size  in  the 

vertical (z) direction  incorporated  through  a  parabolic 

stretching  function.  Typical  grid  sizes  ranged  from 0.01 

near  the  wall  to 0.35 of  the  obstacle  height  at  the  upper 

boundary.  Computing  times  for  a 20,O x 10.0 flow  region 

were  approximately  four  minutes  on  an IBM-360-65 computer. 

V .  RESULTS AND DISCUSSION 

Numerical  solutions  of  the  turbulent  boundary  layer 

equations  have  been  carried  out to assess  the  influence  of  a 

number of different  parameters  on  the  solution.  The  fol- 

lowing parametric  effects  are  discussed  in  corresponding 

order: (1) the  influence  on  the  solution  of  the  pressure 

variations  taken  along  different  nonseparating  streamlines 

Qns, (2) the  effect of the  quadratic  pressure  decay  function 

as  compared to a  more  natural  pressure  decay  based  on  the 

inviscid  model of Chapter 11, and ( 3 )  the  change  of  the 

resulting flow field  due  to  parametric  variation  of  the 

approaching  logarlthmic  wind  profile. 

As to  the  first  effect,  calculations  using  the  decay 

fur)(..:tlon  given In Equation 3.9 were  carried  out  for  the 

i . i . .  !. :. streamlines 

: {i L 2 I : :.Yi the  resulting  pressure  distribution 
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can  be  seen in  Figure 2.11, page 42. Only  small  changes 

occur  in  the computed  velocity  profiles  for the different 

solutions. It should  be  noted  that  the  profiles  presented 

here  and in the following  are as  obtained in the assumed 

numerical  coordinate  system  shown  earlier in Figure 3.lb, 

page 52, i.e., the profiles of  various  x-stations  are 

plotted  relative to  the same  origin ($ns) and  are  not 

shifted  according to  their  actual location in the physical 

coordinate system. Comparing  Figures 3.4 and 3.5 one  finds 

that at the location of maximum  velocity  overshoot, at 

x = 6 - 0  there is only  a 1.2% difference in velocity.between 

the $,, = 0.05 and the $ns = 0.2 solution,  with the velocity 

increasing  toward the latter. It is  apparent  that the 

solutions  are  relatively  insensitive  to  the  choice  of 

streamline  which  lends  credence  to  the  assumption  that  the 

far  flow  field is driven by the pressure  gradient  along the 

first  streamline  for which separation  does  not occur. 

The effect of the pressure  decay  based on  the 

inviscid  model  (Equation 3.12) as compared to  the  quadratic 

pressure  decay  (Equations 3-8 and 3.9) was investigated 

among  others for the $,, = 0.05 streamline. The  results  are 

shown  in  Figures 3.5 and 3.6. It can  be  seen that the 

quadratic  decay  function  dampens  the  overshoot and merges 

the velocity  profile  somewhat  faster  into the undisturbed 

logarithmic  profile than  the inviscid  decay .function. The 

slower  decay  of  the inviscid  model seems more  realistic  as 

it distributes  the  disturbance  better  in  the  vertical 
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Figure 3.4. Velocity  profiles  for $ J ~ ~  = 0.2 and  quadratic 
pressure  decay  function. 
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Figure 3.5. Velocity  profiles  for $ns = 0.05 and quadratic- 
pressure  decay  function. 
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u* - 0.0647 0 
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f 

Figure 3.6. Velocity  profiles for $ns = 0.05 and  inviscid. 
pressure  decay function. 
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direction. * However,  the  difference  between  the  two  is  small 

and  only a comparison'with  experimental  data  can  show  which 

is the  better  decay  function, 

The  combinations  of  parameters  investigated  in  the 

third  group  to  ascertain  the  influence  of  the  approaching 

wind  on  the  solution  are  tabulated  in  Table 3.1 and  graph- 

ically  presented  in  Figure 3.7, which  is  similar  to  the 

previously  discussed  Figure 2.5, page 33. The  respective 

data  points  (Cases  1-4)  were  selected  in  the  following  way: 

four  different  surface  roughness  parameters z o  ranging  from 

z o  = 0.005 to z o  = 0.05 were  chosen.  With  Equation 3.26 and 

the  earlier  assumption  that  the  reference  velocity  is  that 

at  three  obstacle  heights  above  level  terrain  one  can  deter- 

mine  the  corresponding  dimensionless  friction  velocities  u* 

from : 

13.28) 

The  resulting  input  parameters C introduced  into  the 

inviscid  model,  determining  the  respective  pressure  vari- 

ation,  is  then  found  from  Equation 2.65. Table 3.2 gives a 

complete  list  of  the  various  empirical  input  parameters for 

the  inviscid  model  and  the  corresponding  calculation 

parameters. It  should  be  noted,  that ym, and xR were 

kept  constant  in  all  four caseso  The  final  results  are 

pb 

cpmax 

given  in  Figures 3.8 through 3-11. Comparing  the  various 
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TABLE 3 . 1  

PARAMETERS FOR T.HE DIFFERENT DATA POINTS INVESTIGATED 

Set 2 

B o u n d a r y   L a y e r   A p p r o a c h  

0.005 0.0625 

0 . 010 0.0700 

0.020  0.0792 

0.050 0.0973 

Inviscid Test C a s e  

0.005  0.0647 

-0.7920 

-0.7693 

-0.6978 

-0.4805 

-0.8500 

E q u a t i o n  3.28: 

0.4 

. 
E q u a t i o n  2.65: 
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3.7. Graphical  representation of investigated datd.points. 
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TABLE 3.2 

EMPIRICAL INPUT AND RESULTING  CALCULATION  PARAMETERS  FOR 
RESPECTIVE  DATA  POINTS 

%k Case ‘Ph cosh 

1 -0.7920 0 . 70711 1.3348  10.705  1.00830 

2 -0.7693 0.70711 1.3436 10.697 1.00170 

3 -0”  6978 0.70711 1.3733 10 . 669 0.98091 

4 -0.4805 0.70711 1.4827 10.566 0.91163 

%ax 006, Cpmax = 0.5,  xR = 13.0 
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Figure 3.8. Velocity  profiles for ca8e 1. 
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Figure 3.10. Velocity  profiles  for case 3. 
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Figure 3.11. Velocity  profiles for case 4. 
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velocity profiles for the  two  extreme  cases 1 and 4, one 

finds  that  for increasing surface  roughness z o  and friction 

velocity u* there  is a  decrease  of velocity overshoot of 

about 7% at almost all x-stations over  the recirculation 

region  downstream  of the obstruction. Whereas  the  roughness 

effect, i.e., decreasing velocity for increasing roughness 

is dominant in the inner flow  region,  the influence of the 

friction velocity, i.e., increasing velocity for increasing 

u* dominates in the  outer  flow field. This  tendency  appears 

realistic  as  the fuller approach velocity profile with 

smaller z O ,  which  carries  more  mass and higher momentum near 

the  wall  can  be expected to have the larger overshoot. 

Plotting  the profile. of  the velocity increase due  to 

the presence  of the  obstacle near the highest point  of the 

recirculating region, i.e., at x = 6 , O  shown in Figure 3.12 

one  observes  the same trend: Case 1, with the fattest 

initial  profile  due to its lowest surface  roughness,  shows 

the largest velocity increase. 

This  suggests  that a high rise building, for example, 

located in a  downtown  area of large buildings, i.e., high 

surface  roughness,  will not experience  as significant an 

overshoot as  the  same building in a  resort  or  residential 

area surrounded by natural  terrain  or  small  houses having 

low  surface roughness. 

With  regard  to  the overshoot in the velocity pro- 

files, one would generally expect it to be somewhat smaller 

in  magnitude  and to  be distributed over a wider  vertical 
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Figure 3.12. Velocity  increase  due to  the presence of the 
fence  for  various  upstream  conditions. 
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range, as  the  full  scale experimental data  of Frost, et al. 

[32] and partially the wind tunnel data of Good  and 

Joubert [271  indicate. A comparison  with  these  experiments 

is given  in  Figures 3.13 and 3.14, It should be,pointed out 

that  the  former  tests  were conducted for  a  rectangular  block 

building, whereas, the  latter  were for a fence. In  order to 

make  the respective velocity distributions independent of 

the  specific  parameters of the  approach velocity and to 

facilitate  a comparison, all  profiles  are referenced to 

their undisturbed upstream profile.  In Figure 3.13 the 

boundary layer  profiles of the previous Figure 3.5 (qua- 

dratic decay), page 65, and  Figure 3.6 (inviscid decay), 

page 66, are plotted together  with  a  typical profile obtained 

by Reference  [32] in an  afmospheric boundary layer flowing 

over  a  block building. The  horizontal location of these 

profiles is one  obstacle height downstream of the  obstruction 

face. The  stronger and more confined overshoot  region pre- 

dicted by the boundary layer model probably results from the 

fact  that  the  wake  is treated as a  solid body. Because it 

is intended to  match  the present boundary layer model  with 

the proposed integral  technique for the recirculation  region 

latery  fhis  was believed to be  a  reasonable  temporary 

assumption.  It implied, however, that not only the velocity 

decays to zero but also  that  the  mixing  length  reduces to 

R = K zg along  the separating streamline, leading to a 

relatively small  eddy viscosity and low  shear in this region, 

not at all representing the highly turbulent  free  shear 
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Figure 3.13. Comparison of velocity profiles at x = 1.0 
obtained from boundary layer model and full  scale 
experiments 132 1 .  
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Figure 3.14. Comparison of velocity profiles at x = 2.0 
obtained from boundary layer model and wind tunnel 
experiments [271. 



layer.  The  result  is  the  larger  virtually  laminar  overshoot I 

in the  vicinity of the  separating  streamline. . High  shear ' .  

would  not  enly  reduce  the  overshoot  in  magnitude  but  also 
_ .  .. ~ 

spread  it  out  further  in  the  vertical  direction.  The  mass 

and  momentum  diffusion  from  the  shear  layer  along  the 

separating  streamline  into  the  recirculation  region cannot, 

be taken  adequately  into  account  through  the  solid  surface 

assumption  and  thus  lead  to  the  increased  overshoot. 

On  the  other  hand,  comparison  with  the  small  scale 

tests of . [27] in  Figure 3.14 shows  a  measured  overshoot 

which is even  larger  than  that  predicted  by  the  theoretical 

model,  howeverp  less  rapidly  decaying  in  the  vertical 

directionc 

It should  be  noted  here  that  the  two  experiments . 

differ in an  important  parameter.  While  the  first  tests 

(321 were  conducted  in  an  atmospheric  boundary  layer  where 

the r a t lo  of obstacle  height  h* to boundary  layer  thickne-ss 

B *  is very  small, i-er., 

the latter  tests  were  conducted  In  a  smooth  flat  plate  type 

boundary  layer  with 

;F = 2 . 5  h* 

and  hence  should,  because  of  the  increased  mass  displacement 

near  the  obstruction,  produce  a  larger  overshoqt.  Taking 



I 

a1 

this  into consideration, the predicted velocity profiles for 

I atmospheric  flows should tend  towards  the first experiments. 

If, in addition, it is realized that  these  tests  are not 

strictly two-dimensional because  of the  finite  width of the 

block building, but have three-dimensional character 

allowing flow around the  sides,  thereby diminishing the 

overshoot over  the  top of the building, the  comparison with" 

the calculated velocity profiles  may look more reasonable. 

Concluding  this  chapter, one might say that because 

of the solid body wake  assumption and the related simplifii. 

cations, e.g., in the mixing length prescription, the 

boundary layer analysis  yields  results  which  show  overshoot 

regions in the velocity profiles that  are somewhat higher 

than expected. As there are not sufficient experimental 

data available for direct comparison, only  qualitative 

conclusions  can be drawn, following the  trends pointed out' 

in the foregoing dlscussion. 
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CHAPTER IV 

ANALYSIS OF ATMOSPHERIC FLOW  OVER A BLUFF 

SURFACE OBSTRUCTION  BY THE TURBULENT 
. .  

NAVIER-STOKES EQUATIONS 

The complete two-dimensional equations  of  motion  are 

applied to an  atmospheric  flow  over  a forward facing step, 

as  shown in Figure 4.1. Analogous to  the previous  approach 

the atmospheric  motion far upstream of the obstruction  is 

described by the logarithmic  profile  given in Equations 3.1. 

and 3.2, Again the atmosphere is assumed to be neutrally 

stable and Coriolis  effects  are assumed negligible  due to 

the  small  scale of motion  under consideration. 

I. GOVERNING  EQUATIONS 

With the  above  assumptions  the  governing  turbulent 

mean-flow equations f o r  steady  incompressible  flow can  be 

written as follows. 

Momentum  equation in x*-direction 

. *  

+””- G f f  a i i*  aG* 
a:*[ p; [ az*  + F]] 

8 2  
. . . . . , . . . I  . .  



z 9 .0  h* * Upper Boundary 

Logarithmic 
Velocity  Profile t' 

* 

x* = -10 h* x = 10 h* * 

Figure 4.1. Description of flow region  considered. 

w 
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momentum , .  equation  in  z*-direction 

and  the  continuity  equation 

a i i *  ai* - 
ax* az*  
- + - -  (.4.3 ) 

where  overbars  again  denote  the  ensemble  average.  Analogous 

to  the  turbulent  boundary  layer  concept,  turbulence is 

incorporated  through  an  "effective  viscosity" 

= p* + p* t ( 4 . 4 )  

which  is  composed of the  ,molecular  viscosity p* and a turbu- 

lent  viscosity p2. Unlike p*, the  turbulent  viscosity u t  is 
not a property of  the  fluid.  Its  value  will  vary from poknt 

to  point  in  the  flow,  being  largely  determined  by  the 

structure  of  the  turbulence  at  the  respective  location. 

Several  methods,  discussed  in  detail  in  the  next  paragraph, 

are  used  to  express  the  turbulent  viscosity  in  terms of 

known  or  calculable  flow  quantities. To eliminate  the 

pressure  from  the  governing  equations (4.1 and 4 .2 )  the 

stream  function $* is  introduced 



together  with  the  vorticity w *  

Differentiating  the  x*-momentum  equation  with  respect to z*? 

the z*-momentum equation  with  respect  to x* and subtracting 

one  from the  other?  one  obtains  after some  rearrangements 

where 

s; = 2 a 
ax*az* 

Equation 4.8 is  generally  known  as  the  vorticity  transport 

equat,ion.  It reduces  the  two  momentum  equations (4.1 and 

4.2) in the  three  variables c* I w* F*, to  one  equation  in 
the  two  variables w *  and $*. 

- 

. ,  A second  equation  can be derived from Equation 4.7 

with  Equation 4.6 

(4.10) 
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known  as  the stream  function  equation.  Gosman,  et al. [ Z O ]  

have  shown  that  these  new  governing  equations (4.8 and 4.10) 

can be expressed  in the  common form  of  an  elliptical  partial 

differential  equation,  suitable  for  simultaneous  numerical 

integration, i.e., 

- m  ZF a [b a [c@]] + d = 0 (4.11) 

Here (I is the  respective dependent  variable $* or w *  and a, 

b, c and d are  functions  depending on the  variable  under 

consideration. 

After  rearranging  some  terms,  Equation 4.11 can be 

rewritten,  using  tensor  notation, as 

(4.12) 

Table 4.1 lists  what the  functions "a" through Ild" must be. 

TABLE 4.1 

COEFFICIENT  FUNCTIONS OF EQUATION 4.11 OR 4.12 
- .  

9 a b C d 

w *  1 1 -Si 

$* 0 l/P* 1 'W* 
~~ 
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Gosman,  et al. 1201 developed  an  algorithm for solving 

Equation  4.11  which is used  in  this  study. 

11, TURBULENCE  MODELS 

Following  the  turbulent  viscosity  concept,  there 

remains  the  task of formulating u* that is relating  it  to t' 
some  known  quantities  of  the  mean  flow,  These  resulting 

auxiliary  relationships  can  either  be  simple  algebraic 

expressions or more  sophisticated  differential  equations. 

Together  with  the  governing  equations ( 4 . 8  and 4.10) and 

appropriate  boundary 

equations  describing 

conditions  they form a closed  set  of 

the  flow  for  the  problem of interest. 

Mixing  Lenqth  Model 

Among  the  models  which  employ  algebraic  relations 

for is Prandtl's  mixing-length  hypothesis (PML), already 

known  from  the  boundary  layer  approach,  The  hypothesis is 

that  the  turbulent  viscosity  is  equal  to  the  local  product 

of the  density,  the  magnitude of the  mean  rate of strain  and 

the  square of a  characteristic  length  scale of tke  turbulent 

motion, i.e., the  mixing  length R*. 

(4.13) 

The  mixing  length  must  be  prescribed  algebraically for the 

whole flow  field.  In  the  present  investigation  its  distri- 

bution is made  dependent  on  the  shortest  distance  from  the 
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wall  as  indicated  in Figure 4.2. 

J 1 * ( x * , z * )  = 

K ( Z *  - h* + 2;) for  all x*; 

z *  > !x* 

Turbulence  Kinetic  Enerqy  Model 

We  now turn to  a  model of turbulence  where  the 

determination of u t  requires  the  solution of  a  differential 
equation  for  one  property of turbulence. Tlie model  was 

first  suggested by Kolmogorov [ 3 3 ]  and  Prandtl [34] and 
. .  

differs  from  the  previous  mixing  length  model by the assump- 

tion  that "2 is  dependent on the le.ve1 of  turbulence  of  the 
fluid and a  length scale. The  level of turbulence  is 

characterized by the  mean  kinetic  energy  of  the  velocity 

fluctuations,  defined  as 

(4,151 

where u*', v*' and w * '  are  the  fluctuating  parts of the 

velocity  components. The quantity  k* is called the turbu- 

lence  kinetic  energy (TKE).  It is related to  the effective 

viscosity by 

(4.16) 



L" - K(Z* - h* + z:) 

Figure 4.2. Assumed mixing  length  distribution. 
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whe're C is an  empirical  constant or function to be ais- 

cussed  later, k* is determined from a differential  equation- 

of the  same form as Equation  4..12,  containing  -convection, 

diffusion  and  source  terms. It may be  shown  after  some 

lengthy  algebra  that  such  an  equation  can  be  derived from 

Equations  4.1  through  4.3. For a  detailed  derivation  see 

Wolfshtein [ 3 5 ] .  This transport  equation for  the  turbulence 

kinetic  energy is 

IJ 

(4.17) 

where r*  is an  exchange  coefficient for the  turbulence 

kinetic  energy  defined  in  terms of a  Schmidt  number  based  on 
k,eff 

the  effective  viscosity 

%f f 
0 k,eff 

(4.18) 

The  last  term  in  Equation 4,17 represents  "sources"  and 

"sinks" of turbulence; it consists  basically of two  parts, 

one  accounting  for  the  rate of generation of turbulent 

kinetic  energy  by  the  turbulent  shear  stress  and  another 

representing  the  energy  dissipation by viscous  action, 

deducible from dimensional  analysis 

(4.19) 

CD is another  function  to  be  determined  empirically. 



91 

In  this  model  the  length  scale I1* is still  pre- 

ecr,ibed algebraically  and is assumed to be equal to  the 

mixing  length  distribution of Equation 4.14. . .... . 
The de.termination of  the functions C and CD still 

poses  some  problems  especially in cases  where  there  are no 
Fr 

experimental  results available. In  terms of a  turbulent 

Reynolds  number 

- p *  k* 112 . g* 
Rt - lJ* 

one  can express the functions  as 

1 J. 

cFr = cF.10 Rt 
+ -  

(4.20) 

(4.21) 

i.e., when Rt is  large we  can expect the molecular  viscosity 

to  have negligible  effect on  the transport  process  and  the 

functions  take on constant  values,  However, when Rt is very 

small and turbulence  effects  are  negligible,  the  functions 

tend to -. 1 
Rt 
The "universality" of  the  constants CPu and CD 8 for 

0 

which  many users of  the  model had hoped,  could  not be 

achieved: the  values  were found to be  quite  different 

depending on  the experiment  under  consideration.  Wolfshtein 

[ 3 5 ] ,  modeling  a  jet  impinging  normally  on  a  wall,  uses 
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Cvo = 0.22; C D ~  = 0.416 

Ng  and  Spalding [36] use 
> :  

0 
= 1.0; CD, = o e 1  

for  their  calculations of boundary  layers  near  walls, as do 

Rodi  and  Spalding [37] in  their  modeling  of  free  turbulent 

flows.  Launder,  et  al. [ 4 4 ] ,  howeverp employ 

Cvo = 0.09;  

in  their  numerical  solution  for  free  turbulent  shear  flows. 

In  view  of  the  fact  that  there  is  only  insufficient 

experimental  data  available for the  present  investigation, 

no  attempt  shall  be  made  to  propose  new  values  for  the  two 

constants  in  question.  Instead,  the  influence  of  their 

variation  on  the  flow  field  shall  be  studied. 

Two-Eauation  Model  of  Turbulence 

The  next  logical  step  from  the  turbulence  kinetic 

energy  model  desczibed  in  the  previous  paragraph  is  to 

remove  the  uncertainty  from  the  length  scale  distribution 

especially  in  recirculating  flow  regions  and to calculate R* 

rather  than  to  prescribe  it  algebraically.  Rotta [38] was 

the  first  to  propose a differential  equation  for  the  length 

scale,  deriving  it  from  the  Navier-Stokes  equations. 

Gosman,  et al, [ 2 0 ]  reformulated  the  equation  into  the 

common  form  of  their  transport  equation,  thus,  together  with 
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the k* equation  they  arrived  at a two-equation  model  of 

turbulence,  The  equation fo r  R* is 

with 

(4  . 23) 

being  the l'sourcell term of the  turbulent  length  scale.  It ' 

consists of a positive  contribution  representing  the rate 6f 

growth of R* as a result of the  dissipation of-energy, 

especially  from  smaller  eddies  and a negative  contribution 

accounting  for  the  tendency of the  shear  stress  to  reduce 11* 
by  rupturing  the  large  eddies, CB and Cs are  again func- 

tions of Rt  having  similar  behavior  as C and CD in  Equation 

4.218 i.e.8 
1-I 

1 cs = cso + - 
Rt 

( 4 . 2 4 )  

CB,, and CD are  constants  to  be  determined  empirically. 
0 
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111. NUMERICAL SOLUTION 

Numerical  Procedure 

The  mathematical  problem  posed  in  the  previous 

chapter  has  been  solved  by  utilizing  and  extending  the 

numerical  procedure  of  Gosman.,  et  al. [20] For a detailed 

description  the  reader is referred  to  this  reference.  Only 

a brief  outline  is  given  here. 

The  governing  differential  equations  (4.8,  4.10, 

4.17, 4.22 o r  4.12 in  general)  .are  replaced  by  algebraic 

finite  difference  equations  which  are  obtained  by  integration 

over  finite  areas  rather  than  Taylor  series  expansion, 

assuring a broader  range of applicability  especially  in  non- 

rectangular  coordinate  systems.  The  integration  of  the 

convection  terms  employs  "upwind  differencing," a one-sided, 

rather  than  centered  space  differencing,  where  the  scheme  is 

backward  when  the  velocity is positive  and  forward  when  it 

is  negative-  This  formulation of the  first  order  terms 

gives  greater  numerical  stability  than  can  be  obtained  with 

central  differences,  The  remaining  diffusion  and  source 

terms,  however,  are  expressed  in a weighted  central  differ- 

ence form. 

Because of the  nonlinear  character  of  the  resulting 

finite  difference  equations they are  solved by an  iterative, 

successive  substitution  technique. 
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Physical  and  Numerical  Coordinate  System 

The  physical  coordinate  system  was  chosen  such  that 

the  origin  was  located  at  the  lower  step  corner,  with  the 

positive  x*-axis  pointing in downstream  direction  parallel 

to  the  wall  and  the  z*-axis  directed  normally  to  it  aligned 

with  the  front  face  of  the  step.&  (See  Figure 4.1, page 8 3 . )  

In  this  coordinate  system  the  flow  regime  considered  extends 

ten  step  heights  in  the,upstream  and  downstream  directions 

and  nine  step  heights  in  the  vertical  direction.  The  origin 

of the  numerical  coordinates  was  situated  at  the  lower  left 

corner of the  flow field (Figure 4 . 3 )  with I indexing  in  the 

x*-direction and.J indexing  in  the  z*-directkon,  In  the 

iteration  process  the  field  was  swept  from  left to right 

beginning  at  the  wall  and  proceeding  in  the  increasing J- 

direction. 

The  distribution  of  the  grid  points  is  shown  in 

Figure 4 .4 ,  As indicated, a variable  mesh  was  used  which 

graduaiiy  decreased  in  size  near  the  wall  and in the 

vicinity of the  stepd 

Boundary  Conditions 

Depending  on  the  turbulence  model  under  conside- 

ration  the  number  of  differential  equations  to  be  solved 

ranges  from  two  equations  in w *  and $* to  four  equations  in 

w * ,  I$*, k* and R*. The  number  of  boundary  conditions 

required  for  the  respective  case  then  changes  accordingly. 

Due  to  the  elliptical  nature of the  flow  problem,  these 



Upper Boundary 

FLOW 
0 

z * 

Wall 

Figure  4.3.  Descr ip t ion  of phys ica l  (x*,z*) and  numerical (1 ,J)  coord ina te  
system  used. 



Figure 4.4. Actual  grid  distribution. 
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boundary  conditions  are  prescribed  along  the  entire  boundary 

of  the  flow  regime, iren, following  Figure  4.1,  page 8 3 ,  

along  the  inlet,  the  outlet.,  the  upper  and  lower  boundaries 

(wall).  All  conditions are'either of Dirichlet or Neumann 

type 

Inflow.  At  the  inflow a logarithmic  velocity  pro- 

file of the  form 

( 4 . 2 5 )  

is  assumed. The $* boundary  condition  can  then  be  deter- 

mined by integrating  the  velocity  profile  over  the  inl,et 

height 

n*  

( 4 . 2 6 )  

which  yields 

where C can  be  determined  such  that $* = 0 at the  wall. 

Then 

( 4 . 2 8 )  

The  condition for the  vorticity o* is 



where  the  last  term  can  be  calculated  from  the +*- 
distribution  as 

99 

( 4 . 2 9 )  
\ 

( 4 . 3 0 )  

The  remaining  term of the inflow vorticity  was 

allowed  to  develop  as  part of the  solution by approximating 

a2W* - m -  

and  setting 

(4.31) 

('4.329 

The  employed  boundary  condltlon for the turbulent  kinetic 

energy k* was  derived from the  constant  shear  assumption 

underlying  the  derivation of the  logarithmic  law of the 

wall. 

T * ( Z * )  = p*u=' = const. (4.33) 
t 

In  terms of the  PrandtY-Kolmogorov  formulation  ('Equation 

4.16) one  can  write 

( 4 . 3 4 )  

Equatmg the two and  substltutlng !L* from Equation 4.14 and 

Ill I 
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the velocity  gradient  from  Equation 4.30 one  obtains  the 

boundary  conditions  for k* at the inlet as 

The  corresponding  condition  on  the  turbulence  length  scale 

is then 

%* = K ( Z *  + 2:) (4.36) 

Outflow. Two  sets  of  outlet  boundary  conditions 

were used. The first one  assumes  that  the  outlet  location 

is  sufficiently  far  downstream of the  step  that an undis- 

turbed  logarithmic  velocity  profile  has  developed again. 

(4.37) 

I)* can  then  again  be  determined by integrating  u* 

Uzout * 
K z t  I )*(z*)  = p* (z* + zt - h*) [in z* + zo - h* - 1 

. 
(4.38) 

where  uzoUt  is  calculated  from the  conservation  of  mass 

through inlet and outlet, as  no  mass  will be  assumed to 

cross  the  other  boundaries, 

$zn = ** out (4.39) 

with 
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(4.40) 

and 
, I  . .  . . .  

the  friction velocity at the  outlet  is 

Analogue to  the inlet, the first term  of  the vorticity 

boundary condition is determined from the $* distribution by 

while  the  other w*-term is calculated with  the afore- 

mentioned assumption 

a 2 i *  
E = =  

i.e, , 

= -- 1 + a 2  * 
IN-1, J p *  ax 2 

(4.43) 

(4.44) 

(4.45) 
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The  remaining  conditions  on k* and a* were  similar  to 

Equations 4.35 and 4.36 

2 

k* = [ T I  U*out (4.46) 

and 

The second set of outlet boundary conditions  consisted of 

restrictive  formulations  for w *  and $*. 
The  assumption for $* was that 

= o  

which yields 

( 4 . 4 8 )  

(4.49) 

For the  vorticity it is assumed that its  gradient  in the 

flow  direction  vanishes 

g = 0  (4.50) 

The  turbulent  kinetic  energy k was  allowed to decay to  the 
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initial  free  stream  turbulence 'level 

2 

k* = [z] 
Upper boundary. The  location of the  upper boundary 

was assumed  far  enough  out  that  velocity  deflections  caused 

by the  step  were  negligibly small. Consequently  the  stream- 

line  condition  is 

$* = const. (4.52) 

i.e., no  flow  is  crossing  the  upper boundary. 

The  vorticity  condition  imposed  was  that of a 

vanishing  gradient 

(4.53) 

which  was  also  required  for  the  turbulence  kinetic  energy, 

however, in the  horizontal or x*-direction 

ak* - 0 or k* = const. w -  (4.54) 

The  length  scale  was  prescribed  as  given by Equation 4.14. 

Wall boundary. As the  flow is parallel to the  wall 

the  condition  for  the  stream  function  must be 

$* = const. (4.55) 

along the  entire  wall boundary. 
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The vorticity  boundary  condition is  more problem- 

atic, as-  it essentially  drives the flow. It can be  derived 

from  a  Taylor-series  expansion of  the  stream  function around 

a near-wall point (NP) , An away  from  the  wall, in terms of 
the  wall  point (P) conditions 

+ H.O.T.  (4.56) 

By the no-slip  condition: 

F=O 

Combining the last two expressions, one  gets 

(4.57) 

(4.58) 

(4.59) 

Substituting.these.into  Equation 4.56 and  solving  for w; 

The vorticity  gradient at the  wall  was  approximated by 

w *  - w;, [Elp = NP An* 

(4.60) 

(4.61) 

yielding the  second  order vorticity: formulation 
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(4.62) 

The  turbulence  kinetic energy  specification  along 

the  wall poses  some problems. k* = 0 is incompatible  with 

the inlet and outlet  conditions of 

2 
kzn = [s] 
and 

(4.63) 

(4.64) 

It  was  therefore  assumed  that  k*  obeyed  Equation 4.63 also 

along the wall,  however,  with uz varying as 

(4.65) 

implying  a  logarithmic  velocity  profile  from the  wall  to  the 

first  interior node. Furthermore,  at the wall, 

or 

(4.66) 

(4.67) 

The length  scale  was  prescribed by 
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Special  treatment  at  step corner. The  stream 

function  at  the  upper  corner  presents no problem.  Like  the 

rest of the  wall $6 = 0. Similarly, k; and R E  are  uniquely 

prescribed  by  the  lower  boundary  condition.  But  there  are 

several  alternatives  for  the  evaluation of w z .  Referring  to 

Figure 4.5 one  can  apply  Equation 4.62 either  to  the  up- 

stream  side  (face)  of  the  step  or  to  the  downstream  wall 

obtaining  respectively: 

and 

(4.69) 

(4.70) 

There  are  also  other  possibilities.  Seven  different  methods 

are  given  in  Roache [391, and  most  of  these  are  investigated 

in  the  present  study:  they  are  listed  in  Figure 4.5. Method 

(1) represents  an  attempt  to  force  separation  at  the  corner, 

assuming  that  the  vorticity  vanishes at a  separation  point. 

Method (2) is based  on  the  idea  that,  since  separation 

occurs  tangentially  to  the  upstream  wall,  upstream  wall 

evaluation  should  be  used.  Method ( 3 )  is  an  attempt  to 

average o u t  both  values,  while  method (4) is  derived  from 

adding  both  values  in  a  first  order  formulation.  Method ( 5 )  



Corner  Point  C 

Vorticity  Boundary  Conditions  for  C 

(5) Discontinuous  Value 

w* = w* w* = w* 
c1 B c2 A 

or w* = 0 c2 

Figure 4.5. Investigated  boundary  conditions for  upper  step 
corner point. 
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arises  from  the  argument  that  no  continuity of w *  can  be 

expected for  the  geometric  singularity of the  corner. - 

When  applied  to  the  laminar  flow  case,  obtained  by 

setting'the turbulent  viscosity  equal  to  zero,  all'methods 

functioned  well  and  enforced  separation  from  the  corner. 

The  second  formulation,  however,  was  the  most  effective  in 

producing  a  well  developed  realistic  separation  region.  For 

this  reason  it  was  used  in  all  subsequent  calculations. 

Accuracy.  Converaence  and  Economv 

Carrying  out  the  numerical  solution to the  above  set 

of differential  equations,  a  balance is required  between  the 

convergence  and  accuracy  and  the  amount of computing  time 

necessary to meet  these  conditions.  One  of  the  most 

important  factors  affecting  this  balance  is  the  grid  spacing. 

Therefore,  the  following  sections  will  discuss  the  effects 

of grid  dimensions  on  acc'uracy  and  convergence. 

Influence of grid  size  on  accuracy.  Accuracy  is  the 

deviation  of  the  numerical  solution  from  the  exact  solution. 

Unfortunately,  this  exact  solution  is  unknown  in  most  cases, 

thus  the  accuracy  is  not  easily  determined.  One  possibility 

to  overcome  this  difficulty is to test  the  numerical  pro- 

cedure  with  a  simple  problem  for  which  the  exact  solution  is 

known.  This  allows  an  estimate  of  the  general  accuracy  of 

the  procedure.  The  optimum  grid  size,  however,  cannot  be 

transferred to another  problem,  as it strongly  depends on 
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the physical case under consideration, i.e., the  size and 

location of  the occurring gradients. 

Another way is  to  investigate  the  dependence  of  the 

respective  sblution on increment size and  find the grid size 

for which a further decrease  brings  no  further or at most 

minor  improvements  in  the solution. The grid size  for  the 

present analysis  was essentially determined by this approach 

with some additional  compromise  toward economy. The fol- 

lowing discussion  shall  compare  some  results obtained from 

the  grid  size actually used fo r  a l l  subsequent calculations 

with  results obtained from a grid with  twice  as  fine a mesh. 

Such a  grid  increases  the computing time by a factor of 

four. All calculations  were  carried out  for a  surface 

roughness 23 = 0,45  [m] and a  friction velocity of ug = 

0.75 [m/sec]. Figures 4 , 6  through 4,.11 show  the  vertical 

vorticity and stream function distributions at three x*- 

stations for the  two different grid systems. In  the first 

four  figures for the x* = 6.0 h* and x* = 0,O locations 

there  are almost no  differences in the  respective w*- 

and $*-distributions and consequently  no improvement through 

the f h e r  mesh. The situation is slightly different  a short 

distance behind the  step  corner at x* = 0.8 h*. The stream 

function, the better behaved function of the two, is again 

almost identical in both cases. The vorticity-distribution, 

however, shows differences. Even  the  finer  mesh  does not 

quite predict the  wall vorticity correctly, although it 

shows  the  correct  trend, indicated by the dotted line in 
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Figure 4,11. Because of the  expected  flow  separation  at  the 

top  step  corner  and  the  resulting  recirculation  region 

behind  it,  the  vorticity  should  reverse  its  sign  in  the 

vicinity  of  the  wall as  one  approaches  the  wall  in  the 

vertical  direction from the  inside of the  flow  field.  This 

can  best  be  demonstrated  by  looking  at  some  results  from  a 

laminar  flow  case  obtained  by  setting  the  turbulent  vis- 

cosity  to  zero.  Here  the  separation  region is bigger  and 

thus  more  grid  points  fall  into this region.  Looking  at 

stream  function  distributions for two  different  x*-stations 

downstream of the  step  corner  in  Figures 4,12 and 4.14, and 

a  vorticity  distribution  in  Figure 4,13 corresponding  to  the 

f i r s t  x*-stationp  it  is  seen  that  at  x* = 1.6 h*  the  coarser 

grid  does  not  give  negative  streamline  values  near  the  wall, 

which  one  would  expect  because of the  separation  from  the 

corner,  The  finer  grid,  on  the  other  hand,  produces  the 

expected  negative  $*-values,  At x* = 3.0 h* the  separation 

region  is  large  enough  that  even  with  the  coarse  grid 

negative  $*-values  can be obtained  near  the  wall.  Conse- 

quently  the  stream'function  plots  for  the  two  grids look as 

shown in Figure 4,15, where  (a)  is  the  plot for the  coarse 

and (b) the  plot for the  fine  grid,  The  two  vorticity 

distributions  for  the  x* = 1.6 h*  stations  are  shown  in 

Figure 4.13. They  demonstr.ate how inside  the  separation 

region  the  vorticity  changes  sign  in  the  vicinity  of  the 

wall  even for the  coarse  grid,  Because of the  stronger 

developed  separation  region  in  the  laminar  case,  i.e.,  its 
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Figure 4.15. Streamline  plots for  laminar  flow; (a) coarse 
grid, (b) finer grid. 
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greater  physical  extent,  vorticity  .wall  predictions  are 

better  than  in  the  turbulent  case  where  the  separation 

region is considerably  smaller. 

The  above  fine  grid  calculations  were  obtained  from 

solving  a  small  flow  regime  behind  the  step  with  fixed 

boundary  conditions,  interpolated  from  coarse  grid  calcu- 

lations,  except  for  the  vorticity  boundary  condition  at  the 

wall,  which  was  allowed  to  develop  as  a  new  solution. 

It  should  be  pointed  out  that  the  w*-boundary  con- 

dition  (Equation  4.62) is based on the  linear  vorticity 

distribution.  However,  as  can  be  seen from previous  figures, 

the  vorticity  is  linear  only  in  the  very  close  proximity  of 

the  wall.  When  a  fine  enough  mesh is used,  the  point  near 

the  wall is in  this  linear  vorticity  region  and  the  wall 

vorticity  predictions  are  good.  In  either  case,  the vor- 

ticity  away  from  the  wall is not  very  sensitive to mesh size 

and is hardly  influenced by the local inaccuracies  at  the 

wall  inside  the  turbulent  separation  region. 

To summarize  the  findings of the  foregoing  investi- 

gation,  one  might  say  that  except  for  a  small  region  in  the 

immediate  vicinity  of  the  wall  at  a  short  downstream  section 

behind  the  step  corner  the  coafse  grid  produces  reasonable 

results,  which  can  only  be  modestly  improved  by  the  fine 

grid  calculations  requiring four times as much  computing 

time.  The  calculations  show  further  that  inaccuracies  in 

. * .  

the  vorticity  wall  predictions  inside  the  turbulent  sepa- 

ration  region  on  top of the  step’ do not  propagate  far 
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inside  the  flow  field  but  remain  limited  to  a  small  area 

near  the  wall.  The  external  flow  field  remains  largely 

unaffected. 

If  one  wishes  to  improve  the  predictions  in  the  near 

wall  separation  regionp  however,  one  can  choose  from  several 

possibilities.  The  first  has  already  been  mentioned  during 

the  discussion, i.e.8  decrease of  the  grid  size  near  the 

wall  until  the  variation of aPf  computed  quantities  changes 

approximately  linearly  between  adjacent  mesh  points. 

Unfortunately,  this is not  always  easily  accomplished. 

Besides  sizeable  increases  in esmputmg timep convergence 

problems  can  easily  occur  when  unsuitable  grld  distributions 

are  used,  More  information  on  this  subject is contained  in 

the  next  section  dealing  with  convergence. 

A second  possibility is to  leave  the  grid  unaltered, 

but  abandon  the  assumption  of  linear  variation of properties 

near  the  wall,  putting  in  its  place  some  information  about 

the way  in  which  the  properties  actually  vary  in  the  inter- 

val  in  question,  The  relations  containing  this  information 

are  commonly  referred  to  as  "wall  functions."  Suitable 

formulae  for  turbulent flows near  smooth  walls  with  zero 

pressure  gradient  were  derived from Couette  flows  by 

Patankar  and  Spalding [ 4 0 ,  411  and  Wolfshtein [351. While 

the  former  base  their  functions  on  the  Prandtl  mixing-length 

concept,  the  latter  makes  use  of  the  Prandtl-Kolmogorov 

hypothesis,  In  both  casesy  some of the  important  constants 

and  functions  needed  for  the  completion of the  system of 
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,' equations  were  deduced by reference to experimental data. 

For rough  walls, no  wall  functions  have  been  derived 

yet.  A paper by P o  A. Taylor and Y. Delage [ 4 2 ]  is a  first 

approach  in  this  direction. For their  computation  of 

atmospheric  boundary  layers with zero  pressure  gradient over 

rough  terrain  they  assume  a  constant  flux  wall  layer  having 

a  logarithmic  velocity  profile  for the  calculation of the 

first  interior grid point. The formulation  of  the  wall 

boundary  condition  for  the  turbulence  kinetic  energy 

(Equation 4 ,671  is based on  this  assumption, 

The  provision  of  a  comprehensive set of wall  func- 

tions  valid  for  most  situations  of  practical  interest is one 

of the prime  tasks of current  research  in  computational 

fluid  dynamics  dealing  with  turbulence. 

A third  alternative,  much  less  sophisticated, 

follows the basic wall  function  concept to account for the 

nonlinear  behavior near the wall. Taking  advantage of the 

fact  that in the present  problem O* and $* are  fairly 

independent of gr,id size  inside the flow field it determines 

the location  of the separating  streamline, i.e., the second 

zero of $*, by extrapolation  from the interior of the flow 
field. Figure 4.16(b) shows a typlcal  turbulent  flow $*- 

distribution  through the separation  region as obtained  with 

the coarser  grid,  With  the  assumption of linear  variation 

the distribution  between  grid  points follows the solid line. 

This is a good approximation  except for the small  region 

near the wall,  where the estimated  correct  distribution is 
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represented  by  the  dotted hne, The  second  zero of $*#  the 

separation  streamline,  will  always  be  neglected  by  the 

linear  approximation If it f a l l s  between  the  first  two  grid- 

points.  Because of the  almost  linear,  sPlghtPy  parabolic 

behavior of the  stream  function  closer to the  wall,  as  seen 

in  Figures 4.6, 4 . 8 ,  and 4.J0, pages 110, 112, and  114, a 

parabolic  extrapolation  was  used f o r  the  location of the 

second  zero of the  stream  function,  starting from the first 

two  interior I) values  towards  the  wall. A typical  result is 

presented  in  Figure  4.17  which  shows  streamline  plots  for 

the same flow case  with (4.17 (b) 1 and  without  (4.17 (a) 1 

extrapolation of the  separating strealme. 

Factors  affecting  convergence.  While  accuracy 

greatly  depends on mesh  size,  the  convergence of the 

iterative  solution  procedure heavily depends  on  the  mesh 

size  variation.  Recommendations from an  accuracy  viewpoint, 

e.go,  variable  grid  size  near walls, have to be  applied with 

caution  when  laying  out a suitable  mesh. It has  been 

experienced by Gosman,  et  aP. [201 and also in  this  study 

that  near  walls  nonuniform gr id  spacing between  grid l i n e s  

parallel to the wall may  cause  divergence due to  the 

coupling of the  vorticity  and  the stream functlon  equation. 

through  the  vorticity  boundary  condition  (Equation 4 . 6 2 ) .  

The  suggested 1203 remedies  llsted  below  have  been  found 

quite  effective. 

1, Near  the  8all  the ra t lo  of consecutlve  intervals 
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Figure 4.17. Streamline plots using  (a) nopal  linear 
interpolation, and (b) parabolic  extrapolation 
of the separating streamline. 
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20 

between  the  nodes  normal to the  wall  should  be 

kept  as  close to unity  (i.e.?  uniform)  as 

possible or otherwise  below 1.5. 

The  vorticity  boundary  condition  (Equation 4.62)  

should  not  be  used  explicitly  at  the  wall,  but 

be  incorporated  into  the  general  substitution 

formula  for  the  iterative  solution  (implicit 

formulation  for  vorticity). 

In  the  present  investigation  this  last  condition  was  not 

necessary  to  assure  convergence. 

Another  source  of  divergence  is  that  even  inside  the 

flow  field  large  variations of the  coefficients  in  the sub- 

stitution  formula  may  occur.  This is true  especially  in  the 

turbulent  klnetie  energy  solution  cycle for the  source  term 

Si: (Equation 4-19), As shown by [20], the  substitution 

formula  can  In  this  case be rearranged  through  simple  alge- 

braic  manipulatlons  such  that variations in a modified 

source  term  stay  small, It was  found  in  the  present  study 

that  this  approach  may  also  be  used for the  substitution 

formula  of  the  turbulent  length  scale  if its source  term S t  

(Equation 4 . 2 3 )  should  cause  divergence, 

A more  commonly  employed  remedy  against  divergence 

of  the  iteration  processp  although  more  time  consuming, is 

known  as  under-relaxation,  Compared to the  method  just 

discus.. :d, it is more  easnly  applied  In  the  various  cases, 

but  has  the  disadvantage of siowing  down  the  iteration  pro- 

cess,  thus  increasing  the  computing  tlme,  depending  on  the 
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degree  of  under-relaxation, For the  present  problem  there 

was no need  for  under-relaxation.  On  the  contrary,  the 

stream  function,  related to the  vorticity by a Poisson  type 

equation  (Equation  4.10) , could  be  over-relaxed  to  Speed'  up 
the  solution. 

Termination of computation,  The  computation  was 

assumed  to  have  converged  to a sufficientzy  exact  solution 

if  the  difference  of.'the  dependent  variable @ at  point P 

between  successive  iterations  became  small,  f.e., 

(4.71) 

The  superscript N denotes  the  nth  iteration. @p rather  than 

%ax 
order  to  assure  relatively  good  convergence  also  in  areas  of 

was  chosen  in  the  denominator  as a scaling  factor  in 

small $p values. For the  average  solution  using  the Two- 

Equation  model of turbulence  with a 41 x 24  grid  system 

(Figure 4 . 4 ,  page 97) this  was  normally  achieved  after  about 

50 iterations,  taking  about 7-1/2 minutes  on  an IBM-360-65 

computer. 

iV. RESULTS AND DISCUSSION 

The  results  obtained-in  the  present  study  include a 

laminar  flow  solution  and  three  turbulent  flow  solutions, 

the  first of which  uses  the  mixing  length  model,  the  second, 
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the  turbulent  energy  hypothesis  with  a  prescribed  mixing 

length  distribution,  and  the  third,  the  Two-Equation  model 

(a l l  described  in  Section I1 of  this  chapter). FOP the 

latter  turbulence  model  a  parametric  study of two  parameters 

Qf-the approach  wind  profile,  uz  and z t ,  was  carried  out. 

Before  these  results will be  discussed,  some  light  shall  be 

shed on factors  influencing  the  solution  and  affecting  .the 

accuracy from a  different  viewpoint  than  that  discussed  in 

the  previous  sections. It is  referred to the  empiricism 

involved  in  the  solution  procedure  entering  not  only  through 

a  "proper"  choice of coefficients CD0, CDor CB, and C s o  in 

Equations  4.16, 4-19 and  4.23,  but  also through-the selec- 

tion of "suitable"  boundary  conditions  whose  dominating 

effects  are  not  always  recognized. 

Factors  Influencing  the  Solution 

Boundary  condntions,  In m an! case s 1  t is quit e. eas 

to  conjure  up  some kind of plausible  boundary  conditions, 

but  attempts to deteEmine  boundary  conditions  which  are 

equally  realistic,  accurate  and  stable  can  be  highly 

frustrating  and  often  their  selection  ends  with  the  compro- 

mise  that  the  first  condition is neglected  in  favor of the 

last  two. 

This  is  even  more  the  case  when  conditions  cannot 

properly  be  formulated  because  the  necessary  empirical 

information 1s not  available.  Unfortunately,  the  only  way 

around  this  problem is to extend  the  computations  far  enough 
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upstream or downstream  that  either  realistic  assumptions  can 

be  made  (vanishing  .gradients) or the  influence  from  the 

boundary  conditions  becomes  .negligibly  small for  the  region 

of  interest  in  the  flow  field. 

This problem  arlses  not so much with the  formu- 

lation of the  more  familiar  boundary  conditions  for  vor- 

ticity  and  stream  function,  which,  with  the  exceptions 

discussed  earlier,  are  believed  to  be  rather  unequivocal, 

partially  because  one  can  draw  heavily  from  wind  tunnel 

tests  or  flow  visualization  experiments. 

The  problem  appears,  howevery  with  the  more  unknown 

variables k* and R*, with  the  formulation  of  the  outflow 

boundary  condition  being  the most controversial.  Should  the 

turbulence  kinetic  energy, for example,  be  allowed  to  decay 

back  to  the  original  free  stream  value  (Equation 4 . 5 2 )  or 

should it exceed  this  value  in  dependence  on  the  higher 

local  frictlon ,velocity (Equation 4,46)? Should  it  be 

constant  in  the z*-direction 0:1 should its streamwise 

variation  be  zero?  Fortunatelyo  nsne of the  above  conditions 

posed  any  convergence  problems so they  could  all  be  investi- 

gated.  The  results  are  shown  Pn  Figures 4,18 and 4.19. It 

should  be  mentioned  that  the  stream  function as  well  as  the 

vorticity  pattern were h a r d l y  affected  by  the  above  changes 

in  the  k*-boundary  condition  and  are  therefore  omitted. A 

comparison  between  the  turbulence  kinetic  energy  distri- 

butions of the first two  cases  shows  that  the  influence of 

the  outflow  boundary  conditions 
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2 
k* [$I (4 .52)  

and  (b) 

is limited to a  far  downstream  region  about  seven  step 

heights  behind  the step. Apart  from  this  region  the  two 

solutions  are  the  same and, therefore,  independent of their 

particular  boundary condition. The  third  case  with 

2 
k* = ( 4 . 4 6 )  

shows  a  somewhat  different picture. The  change&  brought 

about by this  condition  seem  bigger and 'reach  farther  into 

the  flow 'field than in the  previous case. While  with  the 

first two-conditions  the k*-decay in  z*-direction is faster 

before  the  step  than it is behind it, the  reverse is true 

here. This  behavior is partially a result  of  the  upper 

boundary  condition ak*/az* = 0. More  realistically  this 

boundary  condition  should be ak*/ax* = 0 which  is  equivalent 

to k* = const. Substituting  this.boundary  condition  into 

the  case presented  in  Figure  4,18(a), one  obtains  the  dis- 

tribution  shown  in  Figure 4;20. Comparing  the  two  one  finds 

hardly any or little changes. 
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In.conclusion, it can  be  said  that  in  the  present 

study, ' except  for  the  conditions  chosen  in  Figure  4.19,  page 

133,  the  upper  and  outflow  boundary  conditions  for k*  do  not 

significantly  influence  the  solution,  The  question  if  (a) 

or (bj, i.eo, k* = const. or k* = f ( z * ) ,  is the  more 

realistic  'boundary  condition  becomes  superfluous,  because 

apart  from  the  immediate  vicinity of the  boundary  they  gave 

the  same  results. For this  reason  and  the  fact  that  pre- 

scribed  boundary'  values  give  generally  better.  convergence 

than  normal  gradient  type  conditions,  the  k*-boundary  con- 

ditions  of  Figure 4 . 2 0  were  mainly  used  in  the  following 

computations.  Similar  arguments hold for the  boundary 

conditions of the  turbulence  length  scale 

Empirical  coefficients,  It  was  already  pointed  out 

earlier  that  the  empirical  constants  appearing  in  Equations 

4.19 and 4 . 2 3  are no universal  constantso  but  depend  on  the 

particular flow case  under  consideration., It is common 

practice to determine  these  constants  In  a  preliminary 

evaluation  by  applying  the  governing  equations  to  simple 

flow  situations  such  as  Couette flows [35], flows  with 

homogeneous  turbulence  behind  a  grnd [363  or turbulent 

boundary  layers  in  local  equilibrium  where  the  generation of 

turbulence  at  any  point  in  the  flow  field  is  balanced  by  the 

1o.cal  dissipation [36]. To achieve  closure,  the  relations 

found  this  way  will  then  have to be  supplemented  with  infor- 

mation  gained from experimental  data.  However,  if 
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experimental results  are not available, there is little.  hope 

for an exact determination of the  constants and the  above 

path  has  to  be abandoned. 

Instead, we shall proceed in  a  different  fashion and 

shall look at the  individual  constants and examine how  their 

variation  effects the solution. Also, a trial set of 

"universal" constants deduced from an early proposal of 

Spalding 1431 for a Two Equation model actually using.length 

scale as  the second turbulent transport  equation  will  be 

tested. Finally, a set of preliminary constants  will  be 

selected as a  result of the foregoing investigation. 

Table 4 , 2  gives  a summary of the individual sets of 

constants  reviewed,  Case 1 is the reference solution. 

Cases  2  through 6 represent attempts to  assess  the 

respective  influence of variations in the effective vis- 

cosity ( A C . , , o ) ,  in the  turbulence kinetic energy dissipation 

rate ( A C D , ) ,  in the effects of length scale  stretching 

(ACs,,) and of the length scale breaking ( A C B ~ )  on the 

solution. The  investigation included the  survey of the 

respective $ * v  k* and X *  dlstributkons. 

The  results  are  shown in Figures 4.21 through 4.28. 

The turbulence  kinetic energy dlstributfons  have  been non- 

dimensionalized with  the  tuxbulence  kinetic energy of ,the 

undisturbed approach flow and for easier  comparison the 

turbulence  length  scale vaxiations for the different cases 

are presented in a  single  figure 14.28) where  only  the 

respective  lines of constant R* passing through  one and the 

I 
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TABLE 4.2 

SET OF EMPIRICAL  CONSTANTS USED IN.TR,IAL.'CALCULATIONS 

Case cB 0 

1 1.0 1.0 1.0 1.0 

2 

3 

0.1 

1.0 

1.0 

0.1 

1.0 

1.0 

1.0 

1.0 

4 1.0  1.0  0.1 1.0 

5 1.0 1.0  1.0 0.1 

6 2.0 1.0 1.0 1.0 

7 1.74 1.18 0.27  0.14 

8 1.0 0.1 . 0.27  0.14 
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Figure 4.24. Streamline  pattern and turbulence  kinetic 
energy  contours for  case 6 (Cvo = 2.0, CD, = 1.0, 
cSo = 1.0, CB, = 1.0). 
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same upstream  point P are  plotted.  Case 1, the  reference 

aolution,  with  all  constants  set  equal  to  unity  shall  not  be 

further  discussed at.the moment.  We  shall  return to this 

solution  later. 

In case  2  with Cpo = 0.1 for  which  no  figure  is 

shown,  it  was  intended  in  view of Equation  4.16  and  the 

first  term  on  the  right  side of Equation  4.19  to  cut  down 

the  turbulence  kinetic  energy  production.  This  was  easily 

achieved,  however,  the  amount of reduction  was  too  large. 

Everywhere  in  the  flow  field k* was  smaller  than  the 

approach  conditlon  of  unity,  implying  that  the  step  would 

reduce  turbulence,  A  reasonable  reduction  should  be 

obtained for a  value of CFio only  slightly  smaller  than  one. 

An  increase  in kX was  obtained  in  case 6 (Figure 

4.24)  with C p 0  = 2.0. Compared  with  the  reference  solution, 

a  doubling  of Cp0 produced  a  maximum k* about  four  times as 

large 

The  turbulence  kinetic  energy  levels  should  also 

increase  if  the  dissipation  rate is diminished,  thereby 

increasing  the  net-production  (Equation 4,191. This was 

done  in  case 3 by  setting CDir = 0.1. The  resulting k*- 

distribution  (Figure 4 - 2 2 ]  has  a  maximum of about 3-1/4 

times  that of the  reference  case,  which  like  case 6 is 

unrealistically  high. 

The  attempt  to  decrease  the  length  scale  stretching 

contribution  (Equation 4.23) by reducing  Cs,  to  0.1 In case 

4  failed,  because  the  numerical  procedure  diverged. 
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Howeverp  decreasing  the  length  scale  breaking  con- 

tribution  with C B ~  = 0.1, thus  increasing  the  net k*- 

production  and  the  kR-generation  (case 5) had  a  similar 

effect  to  decreasing  the  dissipation  in  case 3 .  The k*- 

levels  rose  in  the  maximum  to  about 3-1/’2 times  the  refer- 

ence  values. 

Thus,  there  are four  efrective  means  to  increase  the 

turbulence  kinetic  energy  levels: 

1. Increase Cci I, 

2. Increase Cs,. 

3 ,  Decrease C D ~ .  

4 .  Decrease CB,. 

Reducing  the  turbulence  kinetic  energy  requires  opposite 

measures  but  from  the  experience  with  cases 2 and 4 we  know 

that  these  have  to  be  applied  with  greater  moderation. 

In  the  above  trlaPs  only  one of the  respective 

constants  was  changed  at  a  time  to  test  the  individual 

effect,  but  due  to  the  coupling of the  governing  equations, 

changes of several  parameters  at  a  time  can  have  quite 

different  effects‘than  can  be  estimated  from  the  individual 

behavior  and  a  more  systematic  investigation is required. 

However, we shall  restrict  ourselves  in  the  current 

study  to  the  above  cases  and  will  only,  out  of  curiosity, 

try  Spaldings [ 4 3 ]  coefficients  (‘case 7 ) .  The  resulting k*- 

distribution  is  as  high  as  some of the  previous  cases 

(Cue = 2 . 0 ) .  This is probably  a  result of the  relatively 

large  value fo r  C P , .  
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Other  researchers  from  the  same  group of Gosman, 

et  al. [2O] at  the  Imperial  College [36, 3'71 later  used  much 

lower  values  for  the  constants  in  the  k*-equation  and  these 

values  were  also  tried,  case 8 ,  The  constants f o r  the R*- 

equation  from [43], ine., Cso = 0.27 and.Cg, = 0.08 Cp0 were 

still retained,  however..  Figure 4.26, page 144, shows  the 

corresponding  k*-distribution,  .which  surprisingly  enough  is 

almost  identical  to  the  one  in  case 3 where CpO and C D ~  had 

the  same  valuesp  though  .different  coefficients f o r  the R*- 

equation  were  used. It seems  that  the  influence  of Cpo and 

CD, dominates  the  influence of the  coefficients  in  the 

length  scale  equation. 

Until  this  polnt  we  have  only  looked  at  the  turbu- 

lence  kinetic  energy  distributlons,  but  the  goodness or 

physical  reality  of  a  solution  is  probably  better  recognized 

from  the  stream  function distribution or even  the  length 

scale  plot. 

It is interesting to note  that  in  the  respectlve 

stream  function  plots  there  are  hardly  remarkable  changes, 

except  for  the  cases 1 and 6 which  are  the  only  ones  pro- 

ducing  a  noticeable  separation from the  corner. 

It  is,  therefore,  not  without  reason  that  the  length 

scale  distributions  in  Figure 4 . 2 8 #  page 146, for  these  two 

cases  are  different  from  those of the  remaining  cases.  They 

are  not  only  different,  but  more  important  physically moLe 

meaningful.  This  insofar  as it seems  qulte  correct  that R* 

decreases  as  one  approaches  the  step  parallel  to  the  wall, 
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due  to  the  acceleration  in  the  flow  field,  stretching  the 

vortices or due  to  the  breaking of the  larger  eddies by the 

increasing  shear. 

It can  be  seen  in  Figure 4 . 2 7 ,  page 1 4 5 ,  that  closer 

to  the  wall  the  reverse is true.  Here  the  increase of R* 

along  a  line  of  constant  height  represents  the  dissipation 

of  energy  from  smaller  eddies  and  the  formation  of  larger 

eddies  due  to  the  decereration of the  flow  which  finally 

results  in  the  formation of the  front  separation  region. 

A similar  phenomenon  should  occur  near  the  upper 

separation  region  in  those  cases  where  separation  occurs 

(cases 1 and 6) It  seems  realistic  that  after  the  region 

of  decreasing R* in  front  of  the  step  a  region of growth of 

R* should  develop  because  it is essential for  the  top 

separation or recirculation  region to form  that  energy  is 

dissipated  from  the  smaller  eddies Into this  region of 

larger R * . 
This  estimated  correct  behavior  in  the  %*-distribution 

is  predicted  only  in  cases 1 and 6, which  from  this  view- 

point  seem to be  the  most  realistic.  They  are  also  the  only 

ones  to  create  a  top  separatlon  reglon  in  the  $*-plot  which 

is  experimentally  known,  In  case 6, however,  the  turbulence 

kinetic  energy  distribution  was  very  high,  and  not  as 

realistic  as for the  reference  case, 

For these  reasons it is believed  that  case 1, where 

all  "empirical"  constants  are  set  equal to unityo presents a 

physically  meaningful  description of the flow problem  under 
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investigation. Therefore, it is recommended that  until 

suitable  experimental  results  are  available to  redefine  the 

values of the  individual constants, reasonable realistic 

predictions can  be expected with values of unity €or these 

constants, which  were used throughout  all  subsequent 

calculations. 

Comparison of Different Models 

Before looking at the  results of the  three turbu- 

lence  models  we shall take a brief look at some  results of a 

"laminar" solution, which  were obtalned in the early stages 

of the program checkout,  when  the computer code for turbu- 

lent flow with the  appropriate boundary conditions  was 

tested w l t h  the  turbulent viscosity kt set equal to zero, to 

save  computing time. 

Laminar solution. As already indicated above we are 

no t  dealing with a truly lammar solution because of two 

reasons: Flrstl the  inflow and outflow boundary conditions 

for  the stream functlon and the vorticlty were based on  the 

same logarithmlc approach velocity profile used in the 

subsequent tuxbulent cases. A parabolic power law profile 

would have been a  more suitable condit+on,. Second' the 

occurring  Reynolds number  based on the step height 

u*h* 
Ren - - n - 

V 
( 4 . 7 2 )  

where 
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(4 .73 )  

of 3.93 lo6 lies  certainly  outside  the  laminar flow regime. 

Therefore  the  "laminar"  solution  would  probably  better  be , 
called  "quasi-laminar,"  in  the  sense  that  only  the  laminar 

or  molecular  viscosity is used  for  the  calculation of a  flow 

field  which  should  actually  be  turbulent.  Although  one  may 

question  the  validity of the  solution  under  these  circwn- 

stances, it exhibits  some  interesting  features and- shows 

typical  laminar  behavior  when  compared to some of the  later 

turbulent  solutions. 

Figures 4-29 and 4.30 show  the  streamline  distri- 

bution  and a plot  of  the  velocity  profiles in the  vicinity 

of the stepo  The laminar  character of the flow can  best  be 

recognized by taklng  a  short  look  at  one of the  subsequent 

turbulent  solutions, for example Fqure 4.31# and comparing 

the  two  solutions.  We  know from experience  that  laminar 

flow  favors  separation,  while  turbulence  tends  to  s'uppress 

it, .or leads  to fast reattachment of the  flow.  The  same 

trend  can  be  observed  here.  In  the Yammar solution  the 

flow  ahead of the  step  separates  earlier  than  in  the  turbu- 

lent case? In  general,  the  disturbance  caused  by  the  step, 

recognized  by  the  deflection of the  streamlines,  is  felt 

much  further  upstream by the  laminar  flow  than  it  is  by  the 

turbulent  flow,  While  separation  from  the  upper  step  corner 

is strong  in  the  laminar  case w i t h  the  separation  region 

extending  far  downstream,  reattachment  occurs  already a 
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Figure 4.30. Velocity  profiles for laminar flow solution. 



8 
. .  

6 

4 

2 

0 

. .  I - .  
I .  . .  . .  . . . .  . .  . .  . . . . .  . .  . ,  . . . , .  . . . .  . ,  

L 

I .  

-10 -8 -6 -4 -2 0 2 4 6 8 10 

Horizontal  Distance x 
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short  distance  behind  the  upper  step  corner  in  the  turbulent 

case 

Comparison of different  turbulent  solutions.  Results 

for the  three  different  turbulence  models  employed  are  shown 

in  Figures 4.31 through 4 . 3 6 .  A  streamline  pattern  for  the 

PML model,  a  streamline  distribution  and  the  turbulence 

kinetic  energy  contours  for  the TKE model  and  finally a. 

streamline  pattern  with  turbulence  kinetic  energy  and  length 

scale  distributions  for  the  Two-Equation  model. 

From  the  respective  streamline  distributions  it 

seems  at  first  glance  that  all  three  solutions  give  approxi- 

mately  the  same  answers.  However,  this  is  deceiving  as 

inspection of the  remaining  figures  indicat6s  and  it is 

therefore  appropriate to mention  that  the  streamline  pattern 

is  not  really  a  sensitive  indicator of the  correctness  of 

the  turbulence  model.  It is thus  more  informative  to look 

at  the  turbulent  quantities  like  turbulence  kinetic  energy, 

shear  stress or effective  viscosity,  where the.last two  can 

readily  be  compared  in  all  three  solutions. 

In  Figures 4 , 3 7  and 4 . 3 8  we  see  the  individual 

effective  viscosity  predictions along the  upper  step  wall 

for  the  near  wall  nodes  as  weli  as for the  surface  itself. 

Although  measurements  of  shear  stresk  near  reattachment  are 

n4t  completely  reliable,  it  is  fairly  well  known  that  the 

surface  shear  stress 
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Figure 4.32. Streamline  pattern for turbulent flow solution using the 
turbulence  kinetic  energy  concept  with  prescribed  length  scale; 
One-Equation model (Ren = 3.9 x 106 1 . 
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Figure 4.33. Turbulence kinetic energy contours for  One-Equation  model. 
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Figure 4 . 3 5 .  Turbulence  kinetic  energy  contours for Two-Equation model. 



4 

2 

0 

-1 10 -8 -6 -4 -2 0 2 4 6 8 10 
Rorizontal Distance x 



162 

i I / 
0 i 
/ 
i 

- Two Equation Model 

0 - TKE Model 
- PML Model 

I 
? 

I e I I 

0.0 2.0 4.0 6.0 8.0 

Horizontal  Dietancc x 

Figure 4.37. Effective viscosity variation along near wall 
nodes  on  the  top  of  the  step for the different 
turbulence models. 
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and  thus  with  it  the  effective  viscosity  rises  rapidly  after 

reattachment"  However,  as  near  the  reattachment  point  the 

mean  velocity  gradients  are  low,  the PML model  with 

Equation 4,13 likewise  predicts low values  for pzff or u t .  
Surprisingly  enough,  the  results of the TKE model  are  little 

better  and  only  the  Two-Equation  model  follows  the  expected 

trend. 

The  weakness of the PML model  with  Equation 4.13 

lies  not  only  in  the  incorrect  implication  that p t  vanishes 

whenever  the  mean  velocity  gradients  are  zero,  but  more 

generally  in  the  fact  that  is  assumed  to'depend  only on 

local  flow  properties. We knowr however, from experience 

that  the  local  level of velocity  fluctuations  is  determined 

not  only  by  the  events  of  the  point  in  questionp  but  also by 

influences  which  have  originated  some  distance  upstream. 

For instance,  the  high  level of veloclty  fluctuations  at  the 

above  reattachment  point  originates f r o m  a  highly  turbulent 

shear  layer  issuin'g  from the  upper  step  corner.  It is 

important  that  this  nonlocal  character of turbulence  is 

taken  into  account. 

The  fact  that  the TKE model  incorporates  an  addi- 

tional  transport  equation  for k* permits  account  to  be  taken 

of  the  influence  of  neighboring  regions  on  the  local  turbu- 

lence  energy',  However,  as  seen  in  Figure 4.37 and. also 
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reported  by [44], a  TKE  model  without  a length  scale  trans- 

port  equation  produces  results  that  for  wall  boundary  layers 

are only  insignificantly  better than  those obtained with 

PML models. To show  how  difficult it is to  make an 

accurate  guess  for  the  length  scale  distribution  entering 

the  TKE model,  reference is made  to  an R*-distribution 

actually  calculated  with  the  Two-Equation  model in Figure 

4.36, page 161. It is the  convective  transport of R* which 

plays  an  important  role  in the  determination of the flow 

properties and which  results  in  more  physically  correct pre- 

dictions  with  the  Two-Equation model. 

Taking  a  second  look  at  the  respective  stream 

function  plots  one  notices  a  difference in the geometry of 

the upstream and downstream  separation  bubbles  for the 

different models. The predicted  dimensions  decrease  from 

PML to  TKE  to Two-Equation model. Table 4.3 qives  the 

approximate  values  for the  individual cases. This  decrease 

certainly  is  associated  with the higher  turbulence  levels  of 

the  respective models. 

Generally  the  top  separation  region  seems somewhat 

smaller  in  its  vertical  extent than  one would expect. 

Besides  this  possibly  being  the  result of the problem  men- 

tioned  in  Section I11  of  this chapter, it also  seems  logical 

that in an  atmospheric  boundary  layer  where  the  ratio  of  the 

step  height to boundary  layer  thickness, i.e., h*/6* is 

small,  smaller  separation  regions  should  occur  than  those 

reported  for  most  wind  tunnel  experiments  where h*/6* is 
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TABLE 4 . 3  

GEOMETRIES OF SEPARATION,REGIONS FOR DIFFERENT 
TURBULENCE MODELS 

M a a e l s  YR X R 

PML 1.2 0.6 2 .2  

TKE 1.0 0.6 1.4 

Two-Equation 0 0 6  0 .4  1.2 

Flow 

t 

' I  
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usually large. More  on  this  topic  will  be found  in the 

parametric  study  given  in  the  next  section, 

Let us  now  turn to a  closer  examination of the tur- 

bulence  kinetic  energy  contours for the TKE and Two-Equation 

model  in  Figures 4.33 and 4.358 pages,l58.anA 160. These 

can  readily be related to  the  more  commonly used turbulence 

intensities 

I 

(4.74) 

1/'2 n (4.75) 

In  the Two-Equation  model  the  energy  contours  reveal  quite 

realistically  that  the shear layer,  which  grows  from the 

corner of the  stepl  generates  high energy levels. These  are 

carried  downstream  giving  rise  to  comparatively  high  turbu- 

lence  intensities in the  downstream  region of the reattach- 

ment point. This  downstream  convection of energy  together 

with  the  increase  in  the  level of length  scale  (Figure 4.36, 

page  161)  conspire  to  produce  particularly  high  turbulent 

viscosity  in  the  region  behind  reattachment. 

This  phenomenon is also  visible  in  the TKE model k*- 

contours. However8  the  intensities  in the downstream 

reattachment  region are  considerably  smaller  because of the 

inadequate  prescription of the  length  scale,  thus  reaulting 
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in  the  low  predictions  there, as already  seen  in  Figure 

4 .37 ,  page ,162 c. 

Another  yet  more  eye-catching  difference is the  dif- 

fusion  of k* in the  TKE  model as compared  to  the  Two- 

Equation  model,  especially  in  the  downstream  flow  region. 

Experience  tells  us  that  turbulent  shear  layers  usually 

spread  at  a  rate xm with  m  depending  on  the  type  of  flow. 

Likewise  should  the  shear  layer  originating  from  the  step 

corner  spread  out  and  with  it  the  turbulence  kinetic  energy 

or  turbulence  intensity.  Again  this  behavior  is  only  in  the 

Two-Equation  model  described  correctly. 

In the flow region  ahead of the  step  the  turbulent 

intensities do not  differ  that  greatly €or the  two  models. 

Qualitatively  the  predictions  seem  to  agree  quite  well  with 

the  experimental  findings of Taulbee  and  Robertson [ 4 5 ,  4 6 1  

who  report  that  the  turbulent  intensities  increase  strongly 

toward  the  ffont  separation  point.  Primarily  there  is  a 

spreading of the  zone  over  which  the  higher  intensities 

extend  rather  than  a  significant  increase  in  magnitude.  The 

peak  intensities  obcur  appreciably  outslde  the  dividing 

streamline,  which  defines  the  outer  edge  of  the  front  sepa- 

ration  bubble,  Outside  this  peak  the  turbulence  decreases 

with z* as it  does  in  any  boundary  layer.  Inside  the  sepa- 

ration  bubble  the  turbulence  decreases  with  distance  to  an 

essentially  small  constant  .value,  The  authors  point  out, 

however,  that  the  peak  intensities  and  shear  levels  reached 

here  are  still  considerably  less  than  values  typical of 
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those  in  fully  de.veloped  jets  or  free  shear  layers,  like  the 

one  originating  from  the  step  corner  (compare  with  Figure 

4.35,  page  160). 

Finally,  to  complete  the  presentation  of  the 

dependent  variables  involved  in  the  calculation, a vorticity 

contour  plot  determined  from  the  Two-Equation  model is given 

in  Figure  4.39. It  shows  very  clearly  the  downstream 

influence  of  the  step  on  the  vorticity  pattern,  the  creation 

of  a  highly  disturbed  region  with  steep  vorticity  gradients 

not  only  normally  to  the  wall  but  also  in  the  flow  direction. 

The  outer  edge of this  disturbance or wake  region  can  be 

approximated  as  indicated  by  the  dotted  line,  which,  for 

this  particular  flow caseo is  Toughly  of  the  form z* = 

(x*/h*) . 0.6 

It is  also  Interesting  to  note  that  apart  from  this 

region  and  the  immediate  upstream  vicinity of the  step,  the 

constant  vorticity  lines follow quite  closely  the  streamline 

pattern so that  the  application of the  "Frozen  Vorticity 

Theory" of Taulbee  and  Robertson [ 4 5 ,  461 to  the  current 

flow  problem  seems  to  be  a  reasonable  assumption  in  this 

flow  region.  "Frozen  Vorticity"  assumes  that  for  certain 

flow  situations  where  boundary  changes  and  effects  occur so 

suddenly  that  viscosity or turbulent  mixing  do  not  have  any 

time  to  act  on  the  flow,  the  diffusion of vorticity  can  be 

neglected.  The  vortlcity is then  fluid  bound, i.eo, 

"frozen" to the  stream  function  and  its distribution fixed 

as  given by the  approach flow. The  governing  stream 
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function  equation (4.10) would  reduce under these circum- 

stances to 

To summarize  the  key  results of this paragraph, one 

might say that  all  three  turbulence models, PML, TKE, and the 

Two-Equation model, yield quite realistic streamline patterns 

and velocity distributions. In  the prediction of turbulent 

flow properties like k* and T* the Two-Equation model  was 

found to be  superior. The inadequacies of the PML and TKE 

model  are  that they either neglect (PML) or do  not ade- 

quately account  for (TKE) the convective  transport of 

turbulence  quantities  which in the  current  flow problem is 

especially important  as  the  step strongly influences the 

downstream flow region. 

Effect - of  Variation of the Parameters of the 

Approachinq Wind 

A parametric study was conducted utilizing the Two- 

Equation  model to assess  the  influence of the  parameters of 

the approaching wind profile, uf and zf, as  well as the  step 

height h* on  the solution. 

Before proceeding to  the calculation and discussion 

of selected flow  solutions it is useful to study  the 

dimensionless  aspects  of the  flow problem. 

A nondimensional form of the governing equations was 

obtained by adopting the  step height h* as the characteristic 



length  and  the  friction  velocity  ug  as  the  characteristic 

velocity. 

Introducing 

w*h* 
w = 7 :  

k = -  k* 
U**' i 

R* g = -  
h* 

Re, = p*u$h* 
Fr* 

( 4 . 7 7 )  

The  effective  viscosity  can  then  be  nondimension- 

alized  as 

( 4 . 7 8 )  

which  yields for the  Prandtl-Kolmogorov  formulation of ths 

turbulent  viscosity 

( 4 . 7 9 )  

The  resulting  nondimensional form of the  governing  equations 

then is: 

Stream  function  equation  (continuity) 

( 4 . 8 0 )  
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Vorticity  transport  equation  (momentum) 

with 

Turbulence  kinetic energy transport 

(4.82a) 
ok,eff 

with 

(4.82b) 

and the  transport  equation for the  turbulence  length scale 

with 

1/2 
2 

SE = k (4.83b) 

After nondimensionalizing also the boundary conditions, 

e.g., the inlet conditions in the  four  variables 9 ,  w ,  k and 

2 :  
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k = l  

fi = K(Z i- 20) (4.84) 

one  finds  that  the  problem  reduces  from  the  three 

dimensional  parameters ug, 2: and h* to  the  two  dimensionless 

groups z o  and Re,. 

However,  in  view of Equation 4.72 and the high 

Reynolds  number  usually  occurring  in  atmospheric  flows, 

where 
0 

(4.85) 

the flow problem  becomes  essentially  independent of Reynolds 

number. Thus, the  only  remaining  significant  parameter is 2 0 .  

In  the subsequent  study  calculations were carried 

out  for the  following  five values of 2 0 .  

(1) 2 0  = 0.005 

( 2 )  2 0  = 0.020 

( 3 )  z o  = 0.045 

( 4 )  z o  = 0.075 

( 5 )  2 0  = 0.100 

The resulting $-, k- and  &-distributions for  the 

cases 1, 3 and 5 are  shown  in Figures 4.40 through 4.42. 
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Comparing  the  various  streamline  patterns  one 

notices  that  the  shapes  of  the  upstream  and  downstream 

separation  regions  vary  with z o .  While  the  top  reattachment 

length  xR  changes  substantially,  the  front  separation 

distance  xs  varies  only  slightly.  Figures 4.43 and 4.44 

reveal  the  geometry of the  separations  and  reattachments  as 

characterized  by the  distances xsr yR and xR. 

The  reattachment  length xR was  found  to  increase 

with  decreasing z o r  indicating  that  a  smoother  surface  or 

larger  step  height  would  delay  reattachment of the  flow on 

top  of  the  step.  The  reason  €or  this is readily  understood 

by  looking  at  the  respective TKE- and  R-contour  plots  in 

Figures 4.41 and 4.42. For smaller z o  the  'turbulence 

intensities  and  length  scale  are  seen  to  decrease  in  the  up- 

stream  and  downstream  vicinity  of  the  upper  step  corner. 

This  is  a  result  of  the  higher flow acceleration  created  by 

the  displacement of a  fuller  approach  velocity  profile  ccm- 

taining higher,momentum near  the wall (see  also  Figure 

4.45(b)). Acceleration In the  flow  is  generally  known  to 

diminish  turbulen&e  production  and to reduce  the  turbulence 

length  scale or typical  eddy  size by means of vortex 

stretching.  These  lower  turbulence  intensities  together 

with  the  reduced  length  scale  lead  to  a  lower  effective 

viscosity or shear  on  top of the  step,  delaying  reattachment 

and  causing x to  increase. R 
For the  forward  separation  region  the  situation  is 

somewhat  different.  Except  for  a  small region,in  the lower 
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in dependence of zg. 
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z o  range, the bubble is found to grow  in  size with in- 

creasing  surface  roughness parameter, even  though  the 

maximum vorticity occurring  inside the bubble decreases, as 

shown in Figure 4.44(b). In  the z0-range under conside- 

ration  where  the vorticity decreases  only  slightly  the 

growth  of  the bubble seems to be influenced largely by the 

growth  of  the turbulence  length scale. In  the lower zg- 

range mentioned above, howeverB  the  steep decline of 

vorticity seems to be  more  influencial  than  the  growth of 

the length scale  resulting in a  partial  reduction of bubble. 

size. 

Taulbee and Robertson [ 4 6 ]  presented the  results  of 

their  investigation for smooth  walls in dependence of  the 

ratio  of  step  height  to boundary layer  thickness h*/6*. 

This  ratio  is small for most  atmospheric boundary layer 

flows and changes only little: however, it is  similar to  the 

ratio h*/zt used here, in the  sense  that  both  parameters 6* 

and z: characterize the nature of the approaching velocity 

profile in relation to the height of the obstruction. 

Although  a direct comparison  with the  above  results is not 

possible because the  functional  relation  between cS* and zt 

is unknown, one  can nevertheless  compare  common trends. 

Taulbee and Robertson's results predict for 

h* = 1.8.+ xR = 3.8 

and for a s tep  height a  fourth of the above: 
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h*/4 6* = 0 .45  -f XR = 2.3 

For  the present study the  surface  roughness of z,, = 0.005 

predicts the same reattachment length  as h*Jb* = 1.8,  i.e., 

= 0.005 + xR = 3.8 2: 

and for a fourth of  the  step height we get 

* 
+-& = 0.02 + XR = 2.35 

C,arrying on  the  comparison  in  this  fashion for several  other 

step heights, one  finds  the predictions for the reattachment 

length xR in almost exact agreement with  the  results  of [46]. 

Proceeding the  same way with  dimensions xs and yR of the 

front separatlon bubble, however, agreement is not as good, 

with  the  predictions of the Two-Equation model being con- 

sistently lower than Taulbee and Robertson's results. As 

already noted during the comparison of the  three turbulence 

models  (see  Table 4.2, page  138)  this is possibly a con- 

sequence of the  higher  turbulence and turbulent viscosity in 

the k-R-model and could  be adjusted by a  redetermination of 

the  empirical constants. 

More  information  is contained in  the  gradients  of 

the  stream function, i.e., the velocity distributions. 

Figure 4.45, page 188, indicates .how the presence of the 

step  affects  the  horizontal velocity profile at x = 0.0 for 

the different  roughness parameters. The profile with$the 
. ,.. 
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strongest  veloci ty  gradient at the wa d the  highest ' . . 

momentum  near  the  surface  produces  the  largest  velocity 
. .  

overshoot.  This  is  easily  perceived  because  for the  smaller 

z o  the  flow  carries more mass'near the wall,  which  is 

suddenly  displaced by the  step,  creating  a  locally  acceler- 

ated flow region. This  result  was  also  obtained  in  the 

boundary  layer  analysis.  The  overshoot is in accordance 

with  the  lower  shear  predictions and longer  reattachment 

lengths  for  the  smaller z o o  

For  completeness,  Figure 4.46 shows  a  set of 

velocity  profiles  over the  entire  flow  region  for  case  1 

with z o  = 0,005. 

The  turbulence  kinetic  energy  contours  reveal  that 

for  increasing z o  the  turbulence  energy  levels  in  the  shear 

layer  growing from the  step  corner  rise accordingly.  Like- 

wise, the  turbulent viscosity and with it the  turbulent 

shear  stress  increases in unfs.on, The  same  trend  becomes 

apparent by looking at Figure 4.47 which, for  easier 

comparisonp  shows  the  individual  turbulence  profiles 

together at the x =c 3.0 downstream  location,  Once  more  this 

gives  the  reason,  why €or smaller  surface  roughnesses  bigger 

overshoot and larger  downstream  separation  regions  are 

expected. 

The  following  Figure 4.48 gives  agaln  a  complete set 
L . . ,  

of  'turbulence  intensity prof,iles over the  whole  flow  field 

for  case  1  with z o  = 0.005, As already,pointed out in the 
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previous  sections,  these  profiles  essentially  agree  with  the 

findings of Taulbee  and  Robertson  [46] . 
The  turbulence  length  scale  plots  expose7how 

different  the  R-distributions  actually  can  become Pr'om the 

linear  variation  originally  assumed  in  Equations,4.36  and 

4,47 .  The  downstream  influence  of  the  step  on  the.-turbQ- 

lence sthcture 'iS'recognfzed by  the  growth  in R indica&.ing 

an  increase of typical  eddy  size in the  spreading  shgar 

.r.;-*.'r. I , . . - . *.  I .  

layer, TO- facilitate  a  comparison  between  the  various 

roughness  parameters  and  their  effects  on  the  tuf-bnlence 

structure,  Figure 4 , 4 9  shows  the  :&-profiles  at x = 3.0 for 

the  different 2 0 .  The'profiles  have  been  nondimensibnalized 

with  Equation 4!.4:7,to allow  easy  comparison -withithe linear 

distribution,  .In  accordance  ,with  earlier  results the 

rougher  surfaces  produce  shear layers with  sizeaGle in- 

creases  in  the  typical.eddy sizei which  through  Equation 

4.16 augment'  the  turbulent  viscosity qnd tend to :shorten  the 

upper  segakation.-regidns J . FoT:.-.:smalLl z o . #  however.: the R pre- 

. .  ..- 
. .  

a > , > .  . I  . .  

.#I 

dictions.  are  below  those  given  in  Equation 4.47,; hence 

leading  to  higher  overshoot  and  delayed  reattachment. 
e .  - . .  

From"'th&  four'  var'iabies io6 vj, k and R ,  the  vorticity 

and  the  zo-influence  on it has not  yet  been  discussed. 

Recall,, , I .  Figure.4.39,  page  170,,showed . .  the,vart@:ity,cantaurs . . .I 

for z o  = 0,045.  It was  pointed  out  that  a"di'sturbance 

region  with  locally  high  streamwise vorticity gradients is 

* J  .! ' 
. .  

formed  and  spreads  downstream  parabolically.  Figure  4.50 

shows-how a  surface  roughness  change  affects  the  extent  of 
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this  region of high vorticity. It is  seen  that  a 2 0 -  

increase  generates  a  wider  spread,  possibly  as  a  consequence 

of the  changes in the  turbulence  structure (larger  eddies) 

of the shear  layer,  discussed  in the previous paragraph. 

Concluding this parametric  investigation, one may 
. i  

summarize  the  results by stating  that  in the downstream  flow 

region  an  increase  in 2 0  gives  rise  to higher  turbulence 

levels  in  the  shear layer  originating  from the step corner. 

This, 'in turn,  results in higher shear stress  leading to 

fast  reattachment. The  typical  eddy  size in the shear  layer 

increases  with z o  and  causes  rapid  spreading  of  a  region  of 

high  streamwise  vorticity  gradients. 

In  the upstream  flow  region  changes in z g  have  only 

moderate  influence on  the  flow parameters.  Except  for  very 

small  surface  roughnesses,  the  front  separation  bubble  grows 

in  size  for  increasing z o .  
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